Metamath Proof Explorer


Theorem mthmb

Description: If two statements have the same reduct then one is a theorem iff the other is. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mthmb.r R = mStRed T
mthmb.u U = mThm T
Assertion mthmb R X = R Y X U Y U

Proof

Step Hyp Ref Expression
1 mthmb.r R = mStRed T
2 mthmb.u U = mThm T
3 1 2 mthmblem R X = R Y X U Y U
4 1 2 mthmblem R Y = R X Y U X U
5 4 eqcoms R X = R Y Y U X U
6 3 5 impbid R X = R Y X U Y U