| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mrcfval.f |
|- F = ( mrCls ` C ) |
| 2 |
|
sstr2 |
|- ( U C_ V -> ( V C_ s -> U C_ s ) ) |
| 3 |
2
|
adantr |
|- ( ( U C_ V /\ s e. C ) -> ( V C_ s -> U C_ s ) ) |
| 4 |
3
|
ss2rabdv |
|- ( U C_ V -> { s e. C | V C_ s } C_ { s e. C | U C_ s } ) |
| 5 |
|
intss |
|- ( { s e. C | V C_ s } C_ { s e. C | U C_ s } -> |^| { s e. C | U C_ s } C_ |^| { s e. C | V C_ s } ) |
| 6 |
4 5
|
syl |
|- ( U C_ V -> |^| { s e. C | U C_ s } C_ |^| { s e. C | V C_ s } ) |
| 7 |
6
|
3ad2ant2 |
|- ( ( C e. ( Moore ` X ) /\ U C_ V /\ V C_ X ) -> |^| { s e. C | U C_ s } C_ |^| { s e. C | V C_ s } ) |
| 8 |
|
simp1 |
|- ( ( C e. ( Moore ` X ) /\ U C_ V /\ V C_ X ) -> C e. ( Moore ` X ) ) |
| 9 |
|
sstr |
|- ( ( U C_ V /\ V C_ X ) -> U C_ X ) |
| 10 |
9
|
3adant1 |
|- ( ( C e. ( Moore ` X ) /\ U C_ V /\ V C_ X ) -> U C_ X ) |
| 11 |
1
|
mrcval |
|- ( ( C e. ( Moore ` X ) /\ U C_ X ) -> ( F ` U ) = |^| { s e. C | U C_ s } ) |
| 12 |
8 10 11
|
syl2anc |
|- ( ( C e. ( Moore ` X ) /\ U C_ V /\ V C_ X ) -> ( F ` U ) = |^| { s e. C | U C_ s } ) |
| 13 |
1
|
mrcval |
|- ( ( C e. ( Moore ` X ) /\ V C_ X ) -> ( F ` V ) = |^| { s e. C | V C_ s } ) |
| 14 |
13
|
3adant2 |
|- ( ( C e. ( Moore ` X ) /\ U C_ V /\ V C_ X ) -> ( F ` V ) = |^| { s e. C | V C_ s } ) |
| 15 |
7 12 14
|
3sstr4d |
|- ( ( C e. ( Moore ` X ) /\ U C_ V /\ V C_ X ) -> ( F ` U ) C_ ( F ` V ) ) |