Step |
Hyp |
Ref |
Expression |
1 |
|
isnacs.f |
|- F = ( mrCls ` C ) |
2 |
1
|
mrcssid |
|- ( ( C e. ( Moore ` X ) /\ g C_ X ) -> g C_ ( F ` g ) ) |
3 |
|
simpr |
|- ( ( C e. ( Moore ` X ) /\ g C_ ( F ` g ) ) -> g C_ ( F ` g ) ) |
4 |
1
|
mrcssv |
|- ( C e. ( Moore ` X ) -> ( F ` g ) C_ X ) |
5 |
4
|
adantr |
|- ( ( C e. ( Moore ` X ) /\ g C_ ( F ` g ) ) -> ( F ` g ) C_ X ) |
6 |
3 5
|
sstrd |
|- ( ( C e. ( Moore ` X ) /\ g C_ ( F ` g ) ) -> g C_ X ) |
7 |
2 6
|
impbida |
|- ( C e. ( Moore ` X ) -> ( g C_ X <-> g C_ ( F ` g ) ) ) |
8 |
|
vex |
|- g e. _V |
9 |
8
|
elpw |
|- ( g e. ~P X <-> g C_ X ) |
10 |
8
|
elpw |
|- ( g e. ~P ( F ` g ) <-> g C_ ( F ` g ) ) |
11 |
7 9 10
|
3bitr4g |
|- ( C e. ( Moore ` X ) -> ( g e. ~P X <-> g e. ~P ( F ` g ) ) ) |
12 |
11
|
anbi1d |
|- ( C e. ( Moore ` X ) -> ( ( g e. ~P X /\ g e. Fin ) <-> ( g e. ~P ( F ` g ) /\ g e. Fin ) ) ) |
13 |
|
elin |
|- ( g e. ( ~P X i^i Fin ) <-> ( g e. ~P X /\ g e. Fin ) ) |
14 |
|
elin |
|- ( g e. ( ~P ( F ` g ) i^i Fin ) <-> ( g e. ~P ( F ` g ) /\ g e. Fin ) ) |
15 |
12 13 14
|
3bitr4g |
|- ( C e. ( Moore ` X ) -> ( g e. ( ~P X i^i Fin ) <-> g e. ( ~P ( F ` g ) i^i Fin ) ) ) |
16 |
|
pweq |
|- ( S = ( F ` g ) -> ~P S = ~P ( F ` g ) ) |
17 |
16
|
ineq1d |
|- ( S = ( F ` g ) -> ( ~P S i^i Fin ) = ( ~P ( F ` g ) i^i Fin ) ) |
18 |
17
|
eleq2d |
|- ( S = ( F ` g ) -> ( g e. ( ~P S i^i Fin ) <-> g e. ( ~P ( F ` g ) i^i Fin ) ) ) |
19 |
18
|
bibi2d |
|- ( S = ( F ` g ) -> ( ( g e. ( ~P X i^i Fin ) <-> g e. ( ~P S i^i Fin ) ) <-> ( g e. ( ~P X i^i Fin ) <-> g e. ( ~P ( F ` g ) i^i Fin ) ) ) ) |
20 |
15 19
|
syl5ibrcom |
|- ( C e. ( Moore ` X ) -> ( S = ( F ` g ) -> ( g e. ( ~P X i^i Fin ) <-> g e. ( ~P S i^i Fin ) ) ) ) |
21 |
20
|
pm5.32rd |
|- ( C e. ( Moore ` X ) -> ( ( g e. ( ~P X i^i Fin ) /\ S = ( F ` g ) ) <-> ( g e. ( ~P S i^i Fin ) /\ S = ( F ` g ) ) ) ) |
22 |
21
|
rexbidv2 |
|- ( C e. ( Moore ` X ) -> ( E. g e. ( ~P X i^i Fin ) S = ( F ` g ) <-> E. g e. ( ~P S i^i Fin ) S = ( F ` g ) ) ) |