| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isnacs.f |
|- F = ( mrCls ` C ) |
| 2 |
1
|
mrefg2 |
|- ( C e. ( Moore ` X ) -> ( E. g e. ( ~P X i^i Fin ) S = ( F ` g ) <-> E. g e. ( ~P S i^i Fin ) S = ( F ` g ) ) ) |
| 3 |
2
|
adantr |
|- ( ( C e. ( Moore ` X ) /\ S e. C ) -> ( E. g e. ( ~P X i^i Fin ) S = ( F ` g ) <-> E. g e. ( ~P S i^i Fin ) S = ( F ` g ) ) ) |
| 4 |
|
eqss |
|- ( S = ( F ` g ) <-> ( S C_ ( F ` g ) /\ ( F ` g ) C_ S ) ) |
| 5 |
|
simpll |
|- ( ( ( C e. ( Moore ` X ) /\ S e. C ) /\ g e. ( ~P S i^i Fin ) ) -> C e. ( Moore ` X ) ) |
| 6 |
|
inss1 |
|- ( ~P S i^i Fin ) C_ ~P S |
| 7 |
6
|
sseli |
|- ( g e. ( ~P S i^i Fin ) -> g e. ~P S ) |
| 8 |
7
|
elpwid |
|- ( g e. ( ~P S i^i Fin ) -> g C_ S ) |
| 9 |
8
|
adantl |
|- ( ( ( C e. ( Moore ` X ) /\ S e. C ) /\ g e. ( ~P S i^i Fin ) ) -> g C_ S ) |
| 10 |
|
simplr |
|- ( ( ( C e. ( Moore ` X ) /\ S e. C ) /\ g e. ( ~P S i^i Fin ) ) -> S e. C ) |
| 11 |
1
|
mrcsscl |
|- ( ( C e. ( Moore ` X ) /\ g C_ S /\ S e. C ) -> ( F ` g ) C_ S ) |
| 12 |
5 9 10 11
|
syl3anc |
|- ( ( ( C e. ( Moore ` X ) /\ S e. C ) /\ g e. ( ~P S i^i Fin ) ) -> ( F ` g ) C_ S ) |
| 13 |
12
|
biantrud |
|- ( ( ( C e. ( Moore ` X ) /\ S e. C ) /\ g e. ( ~P S i^i Fin ) ) -> ( S C_ ( F ` g ) <-> ( S C_ ( F ` g ) /\ ( F ` g ) C_ S ) ) ) |
| 14 |
4 13
|
bitr4id |
|- ( ( ( C e. ( Moore ` X ) /\ S e. C ) /\ g e. ( ~P S i^i Fin ) ) -> ( S = ( F ` g ) <-> S C_ ( F ` g ) ) ) |
| 15 |
14
|
rexbidva |
|- ( ( C e. ( Moore ` X ) /\ S e. C ) -> ( E. g e. ( ~P S i^i Fin ) S = ( F ` g ) <-> E. g e. ( ~P S i^i Fin ) S C_ ( F ` g ) ) ) |
| 16 |
3 15
|
bitrd |
|- ( ( C e. ( Moore ` X ) /\ S e. C ) -> ( E. g e. ( ~P X i^i Fin ) S = ( F ` g ) <-> E. g e. ( ~P S i^i Fin ) S C_ ( F ` g ) ) ) |