Metamath Proof Explorer


Theorem mrefg3

Description: Slight variation on finite generation for closure systems. (Contributed by Stefan O'Rear, 4-Apr-2015)

Ref Expression
Hypothesis isnacs.f 𝐹 = ( mrCls ‘ 𝐶 )
Assertion mrefg3 ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆𝐶 ) → ( ∃ 𝑔 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑆 = ( 𝐹𝑔 ) ↔ ∃ 𝑔 ∈ ( 𝒫 𝑆 ∩ Fin ) 𝑆 ⊆ ( 𝐹𝑔 ) ) )

Proof

Step Hyp Ref Expression
1 isnacs.f 𝐹 = ( mrCls ‘ 𝐶 )
2 1 mrefg2 ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( ∃ 𝑔 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑆 = ( 𝐹𝑔 ) ↔ ∃ 𝑔 ∈ ( 𝒫 𝑆 ∩ Fin ) 𝑆 = ( 𝐹𝑔 ) ) )
3 2 adantr ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆𝐶 ) → ( ∃ 𝑔 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑆 = ( 𝐹𝑔 ) ↔ ∃ 𝑔 ∈ ( 𝒫 𝑆 ∩ Fin ) 𝑆 = ( 𝐹𝑔 ) ) )
4 eqss ( 𝑆 = ( 𝐹𝑔 ) ↔ ( 𝑆 ⊆ ( 𝐹𝑔 ) ∧ ( 𝐹𝑔 ) ⊆ 𝑆 ) )
5 simpll ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆𝐶 ) ∧ 𝑔 ∈ ( 𝒫 𝑆 ∩ Fin ) ) → 𝐶 ∈ ( Moore ‘ 𝑋 ) )
6 inss1 ( 𝒫 𝑆 ∩ Fin ) ⊆ 𝒫 𝑆
7 6 sseli ( 𝑔 ∈ ( 𝒫 𝑆 ∩ Fin ) → 𝑔 ∈ 𝒫 𝑆 )
8 7 elpwid ( 𝑔 ∈ ( 𝒫 𝑆 ∩ Fin ) → 𝑔𝑆 )
9 8 adantl ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆𝐶 ) ∧ 𝑔 ∈ ( 𝒫 𝑆 ∩ Fin ) ) → 𝑔𝑆 )
10 simplr ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆𝐶 ) ∧ 𝑔 ∈ ( 𝒫 𝑆 ∩ Fin ) ) → 𝑆𝐶 )
11 1 mrcsscl ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑔𝑆𝑆𝐶 ) → ( 𝐹𝑔 ) ⊆ 𝑆 )
12 5 9 10 11 syl3anc ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆𝐶 ) ∧ 𝑔 ∈ ( 𝒫 𝑆 ∩ Fin ) ) → ( 𝐹𝑔 ) ⊆ 𝑆 )
13 12 biantrud ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆𝐶 ) ∧ 𝑔 ∈ ( 𝒫 𝑆 ∩ Fin ) ) → ( 𝑆 ⊆ ( 𝐹𝑔 ) ↔ ( 𝑆 ⊆ ( 𝐹𝑔 ) ∧ ( 𝐹𝑔 ) ⊆ 𝑆 ) ) )
14 4 13 bitr4id ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆𝐶 ) ∧ 𝑔 ∈ ( 𝒫 𝑆 ∩ Fin ) ) → ( 𝑆 = ( 𝐹𝑔 ) ↔ 𝑆 ⊆ ( 𝐹𝑔 ) ) )
15 14 rexbidva ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆𝐶 ) → ( ∃ 𝑔 ∈ ( 𝒫 𝑆 ∩ Fin ) 𝑆 = ( 𝐹𝑔 ) ↔ ∃ 𝑔 ∈ ( 𝒫 𝑆 ∩ Fin ) 𝑆 ⊆ ( 𝐹𝑔 ) ) )
16 3 15 bitrd ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆𝐶 ) → ( ∃ 𝑔 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑆 = ( 𝐹𝑔 ) ↔ ∃ 𝑔 ∈ ( 𝒫 𝑆 ∩ Fin ) 𝑆 ⊆ ( 𝐹𝑔 ) ) )