| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isnacs.f |
⊢ 𝐹 = ( mrCls ‘ 𝐶 ) |
| 2 |
1
|
mrefg2 |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( ∃ 𝑔 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑆 = ( 𝐹 ‘ 𝑔 ) ↔ ∃ 𝑔 ∈ ( 𝒫 𝑆 ∩ Fin ) 𝑆 = ( 𝐹 ‘ 𝑔 ) ) ) |
| 3 |
2
|
adantr |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆 ∈ 𝐶 ) → ( ∃ 𝑔 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑆 = ( 𝐹 ‘ 𝑔 ) ↔ ∃ 𝑔 ∈ ( 𝒫 𝑆 ∩ Fin ) 𝑆 = ( 𝐹 ‘ 𝑔 ) ) ) |
| 4 |
|
eqss |
⊢ ( 𝑆 = ( 𝐹 ‘ 𝑔 ) ↔ ( 𝑆 ⊆ ( 𝐹 ‘ 𝑔 ) ∧ ( 𝐹 ‘ 𝑔 ) ⊆ 𝑆 ) ) |
| 5 |
|
simpll |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆 ∈ 𝐶 ) ∧ 𝑔 ∈ ( 𝒫 𝑆 ∩ Fin ) ) → 𝐶 ∈ ( Moore ‘ 𝑋 ) ) |
| 6 |
|
inss1 |
⊢ ( 𝒫 𝑆 ∩ Fin ) ⊆ 𝒫 𝑆 |
| 7 |
6
|
sseli |
⊢ ( 𝑔 ∈ ( 𝒫 𝑆 ∩ Fin ) → 𝑔 ∈ 𝒫 𝑆 ) |
| 8 |
7
|
elpwid |
⊢ ( 𝑔 ∈ ( 𝒫 𝑆 ∩ Fin ) → 𝑔 ⊆ 𝑆 ) |
| 9 |
8
|
adantl |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆 ∈ 𝐶 ) ∧ 𝑔 ∈ ( 𝒫 𝑆 ∩ Fin ) ) → 𝑔 ⊆ 𝑆 ) |
| 10 |
|
simplr |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆 ∈ 𝐶 ) ∧ 𝑔 ∈ ( 𝒫 𝑆 ∩ Fin ) ) → 𝑆 ∈ 𝐶 ) |
| 11 |
1
|
mrcsscl |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑔 ⊆ 𝑆 ∧ 𝑆 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑔 ) ⊆ 𝑆 ) |
| 12 |
5 9 10 11
|
syl3anc |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆 ∈ 𝐶 ) ∧ 𝑔 ∈ ( 𝒫 𝑆 ∩ Fin ) ) → ( 𝐹 ‘ 𝑔 ) ⊆ 𝑆 ) |
| 13 |
12
|
biantrud |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆 ∈ 𝐶 ) ∧ 𝑔 ∈ ( 𝒫 𝑆 ∩ Fin ) ) → ( 𝑆 ⊆ ( 𝐹 ‘ 𝑔 ) ↔ ( 𝑆 ⊆ ( 𝐹 ‘ 𝑔 ) ∧ ( 𝐹 ‘ 𝑔 ) ⊆ 𝑆 ) ) ) |
| 14 |
4 13
|
bitr4id |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆 ∈ 𝐶 ) ∧ 𝑔 ∈ ( 𝒫 𝑆 ∩ Fin ) ) → ( 𝑆 = ( 𝐹 ‘ 𝑔 ) ↔ 𝑆 ⊆ ( 𝐹 ‘ 𝑔 ) ) ) |
| 15 |
14
|
rexbidva |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆 ∈ 𝐶 ) → ( ∃ 𝑔 ∈ ( 𝒫 𝑆 ∩ Fin ) 𝑆 = ( 𝐹 ‘ 𝑔 ) ↔ ∃ 𝑔 ∈ ( 𝒫 𝑆 ∩ Fin ) 𝑆 ⊆ ( 𝐹 ‘ 𝑔 ) ) ) |
| 16 |
3 15
|
bitrd |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆 ∈ 𝐶 ) → ( ∃ 𝑔 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑆 = ( 𝐹 ‘ 𝑔 ) ↔ ∃ 𝑔 ∈ ( 𝒫 𝑆 ∩ Fin ) 𝑆 ⊆ ( 𝐹 ‘ 𝑔 ) ) ) |