Metamath Proof Explorer


Theorem mulne0bd

Description: The product of two nonzero numbers is nonzero. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses msq0d.1
|- ( ph -> A e. CC )
mul0ord.2
|- ( ph -> B e. CC )
Assertion mulne0bd
|- ( ph -> ( ( A =/= 0 /\ B =/= 0 ) <-> ( A x. B ) =/= 0 ) )

Proof

Step Hyp Ref Expression
1 msq0d.1
 |-  ( ph -> A e. CC )
2 mul0ord.2
 |-  ( ph -> B e. CC )
3 mulne0b
 |-  ( ( A e. CC /\ B e. CC ) -> ( ( A =/= 0 /\ B =/= 0 ) <-> ( A x. B ) =/= 0 ) )
4 1 2 3 syl2anc
 |-  ( ph -> ( ( A =/= 0 /\ B =/= 0 ) <-> ( A x. B ) =/= 0 ) )