Metamath Proof Explorer


Theorem mulvfn

Description: Scalar multiplication producees a function. (Contributed by Andrew Salmon, 27-Jan-2012)

Ref Expression
Assertion mulvfn
|- ( ( A e. C /\ B e. D ) -> ( A .v B ) Fn RR )

Proof

Step Hyp Ref Expression
1 ovex
 |-  ( A x. ( B ` x ) ) e. _V
2 eqid
 |-  ( x e. RR |-> ( A x. ( B ` x ) ) ) = ( x e. RR |-> ( A x. ( B ` x ) ) )
3 1 2 fnmpti
 |-  ( x e. RR |-> ( A x. ( B ` x ) ) ) Fn RR
4 mulvval
 |-  ( ( A e. C /\ B e. D ) -> ( A .v B ) = ( x e. RR |-> ( A x. ( B ` x ) ) ) )
5 4 fneq1d
 |-  ( ( A e. C /\ B e. D ) -> ( ( A .v B ) Fn RR <-> ( x e. RR |-> ( A x. ( B ` x ) ) ) Fn RR ) )
6 3 5 mpbiri
 |-  ( ( A e. C /\ B e. D ) -> ( A .v B ) Fn RR )