Metamath Proof Explorer


Theorem mulvfn

Description: Scalar multiplication producees a function. (Contributed by Andrew Salmon, 27-Jan-2012)

Ref Expression
Assertion mulvfn ( ( 𝐴𝐶𝐵𝐷 ) → ( 𝐴 .𝑣 𝐵 ) Fn ℝ )

Proof

Step Hyp Ref Expression
1 ovex ( 𝐴 · ( 𝐵𝑥 ) ) ∈ V
2 eqid ( 𝑥 ∈ ℝ ↦ ( 𝐴 · ( 𝐵𝑥 ) ) ) = ( 𝑥 ∈ ℝ ↦ ( 𝐴 · ( 𝐵𝑥 ) ) )
3 1 2 fnmpti ( 𝑥 ∈ ℝ ↦ ( 𝐴 · ( 𝐵𝑥 ) ) ) Fn ℝ
4 mulvval ( ( 𝐴𝐶𝐵𝐷 ) → ( 𝐴 .𝑣 𝐵 ) = ( 𝑥 ∈ ℝ ↦ ( 𝐴 · ( 𝐵𝑥 ) ) ) )
5 4 fneq1d ( ( 𝐴𝐶𝐵𝐷 ) → ( ( 𝐴 .𝑣 𝐵 ) Fn ℝ ↔ ( 𝑥 ∈ ℝ ↦ ( 𝐴 · ( 𝐵𝑥 ) ) ) Fn ℝ ) )
6 3 5 mpbiri ( ( 𝐴𝐶𝐵𝐷 ) → ( 𝐴 .𝑣 𝐵 ) Fn ℝ )