Description: Scalar multiplication producees a function. (Contributed by Andrew Salmon, 27-Jan-2012)
Ref | Expression | ||
---|---|---|---|
Assertion | mulvfn | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( 𝐴 .𝑣 𝐵 ) Fn ℝ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex | ⊢ ( 𝐴 · ( 𝐵 ‘ 𝑥 ) ) ∈ V | |
2 | eqid | ⊢ ( 𝑥 ∈ ℝ ↦ ( 𝐴 · ( 𝐵 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℝ ↦ ( 𝐴 · ( 𝐵 ‘ 𝑥 ) ) ) | |
3 | 1 2 | fnmpti | ⊢ ( 𝑥 ∈ ℝ ↦ ( 𝐴 · ( 𝐵 ‘ 𝑥 ) ) ) Fn ℝ |
4 | mulvval | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( 𝐴 .𝑣 𝐵 ) = ( 𝑥 ∈ ℝ ↦ ( 𝐴 · ( 𝐵 ‘ 𝑥 ) ) ) ) | |
5 | 4 | fneq1d | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( ( 𝐴 .𝑣 𝐵 ) Fn ℝ ↔ ( 𝑥 ∈ ℝ ↦ ( 𝐴 · ( 𝐵 ‘ 𝑥 ) ) ) Fn ℝ ) ) |
6 | 3 5 | mpbiri | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( 𝐴 .𝑣 𝐵 ) Fn ℝ ) |