Step |
Hyp |
Ref |
Expression |
1 |
|
addrfn |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( 𝐴 +𝑟 𝐵 ) Fn ℝ ) |
2 |
|
addrfn |
⊢ ( ( 𝐵 ∈ 𝐷 ∧ 𝐴 ∈ 𝐶 ) → ( 𝐵 +𝑟 𝐴 ) Fn ℝ ) |
3 |
2
|
ancoms |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( 𝐵 +𝑟 𝐴 ) Fn ℝ ) |
4 |
|
addcomgi |
⊢ ( ( 𝐴 ‘ 𝑥 ) + ( 𝐵 ‘ 𝑥 ) ) = ( ( 𝐵 ‘ 𝑥 ) + ( 𝐴 ‘ 𝑥 ) ) |
5 |
|
addrfv |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝑥 ∈ ℝ ) → ( ( 𝐴 +𝑟 𝐵 ) ‘ 𝑥 ) = ( ( 𝐴 ‘ 𝑥 ) + ( 𝐵 ‘ 𝑥 ) ) ) |
6 |
|
addrfv |
⊢ ( ( 𝐵 ∈ 𝐷 ∧ 𝐴 ∈ 𝐶 ∧ 𝑥 ∈ ℝ ) → ( ( 𝐵 +𝑟 𝐴 ) ‘ 𝑥 ) = ( ( 𝐵 ‘ 𝑥 ) + ( 𝐴 ‘ 𝑥 ) ) ) |
7 |
6
|
3com12 |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝑥 ∈ ℝ ) → ( ( 𝐵 +𝑟 𝐴 ) ‘ 𝑥 ) = ( ( 𝐵 ‘ 𝑥 ) + ( 𝐴 ‘ 𝑥 ) ) ) |
8 |
4 5 7
|
3eqtr4a |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝑥 ∈ ℝ ) → ( ( 𝐴 +𝑟 𝐵 ) ‘ 𝑥 ) = ( ( 𝐵 +𝑟 𝐴 ) ‘ 𝑥 ) ) |
9 |
8
|
3expia |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( 𝑥 ∈ ℝ → ( ( 𝐴 +𝑟 𝐵 ) ‘ 𝑥 ) = ( ( 𝐵 +𝑟 𝐴 ) ‘ 𝑥 ) ) ) |
10 |
9
|
ralrimiv |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ∀ 𝑥 ∈ ℝ ( ( 𝐴 +𝑟 𝐵 ) ‘ 𝑥 ) = ( ( 𝐵 +𝑟 𝐴 ) ‘ 𝑥 ) ) |
11 |
|
eqfnfv |
⊢ ( ( ( 𝐴 +𝑟 𝐵 ) Fn ℝ ∧ ( 𝐵 +𝑟 𝐴 ) Fn ℝ ) → ( ( 𝐴 +𝑟 𝐵 ) = ( 𝐵 +𝑟 𝐴 ) ↔ ∀ 𝑥 ∈ ℝ ( ( 𝐴 +𝑟 𝐵 ) ‘ 𝑥 ) = ( ( 𝐵 +𝑟 𝐴 ) ‘ 𝑥 ) ) ) |
12 |
10 11
|
syl5ibrcom |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( ( ( 𝐴 +𝑟 𝐵 ) Fn ℝ ∧ ( 𝐵 +𝑟 𝐴 ) Fn ℝ ) → ( 𝐴 +𝑟 𝐵 ) = ( 𝐵 +𝑟 𝐴 ) ) ) |
13 |
1 3 12
|
mp2and |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( 𝐴 +𝑟 𝐵 ) = ( 𝐵 +𝑟 𝐴 ) ) |