Metamath Proof Explorer


Theorem addrcom

Description: Vector addition is commutative. (Contributed by Andrew Salmon, 28-Jan-2012)

Ref Expression
Assertion addrcom ( ( 𝐴𝐶𝐵𝐷 ) → ( 𝐴 +𝑟 𝐵 ) = ( 𝐵 +𝑟 𝐴 ) )

Proof

Step Hyp Ref Expression
1 addrfn ( ( 𝐴𝐶𝐵𝐷 ) → ( 𝐴 +𝑟 𝐵 ) Fn ℝ )
2 addrfn ( ( 𝐵𝐷𝐴𝐶 ) → ( 𝐵 +𝑟 𝐴 ) Fn ℝ )
3 2 ancoms ( ( 𝐴𝐶𝐵𝐷 ) → ( 𝐵 +𝑟 𝐴 ) Fn ℝ )
4 addcomgi ( ( 𝐴𝑥 ) + ( 𝐵𝑥 ) ) = ( ( 𝐵𝑥 ) + ( 𝐴𝑥 ) )
5 addrfv ( ( 𝐴𝐶𝐵𝐷𝑥 ∈ ℝ ) → ( ( 𝐴 +𝑟 𝐵 ) ‘ 𝑥 ) = ( ( 𝐴𝑥 ) + ( 𝐵𝑥 ) ) )
6 addrfv ( ( 𝐵𝐷𝐴𝐶𝑥 ∈ ℝ ) → ( ( 𝐵 +𝑟 𝐴 ) ‘ 𝑥 ) = ( ( 𝐵𝑥 ) + ( 𝐴𝑥 ) ) )
7 6 3com12 ( ( 𝐴𝐶𝐵𝐷𝑥 ∈ ℝ ) → ( ( 𝐵 +𝑟 𝐴 ) ‘ 𝑥 ) = ( ( 𝐵𝑥 ) + ( 𝐴𝑥 ) ) )
8 4 5 7 3eqtr4a ( ( 𝐴𝐶𝐵𝐷𝑥 ∈ ℝ ) → ( ( 𝐴 +𝑟 𝐵 ) ‘ 𝑥 ) = ( ( 𝐵 +𝑟 𝐴 ) ‘ 𝑥 ) )
9 8 3expia ( ( 𝐴𝐶𝐵𝐷 ) → ( 𝑥 ∈ ℝ → ( ( 𝐴 +𝑟 𝐵 ) ‘ 𝑥 ) = ( ( 𝐵 +𝑟 𝐴 ) ‘ 𝑥 ) ) )
10 9 ralrimiv ( ( 𝐴𝐶𝐵𝐷 ) → ∀ 𝑥 ∈ ℝ ( ( 𝐴 +𝑟 𝐵 ) ‘ 𝑥 ) = ( ( 𝐵 +𝑟 𝐴 ) ‘ 𝑥 ) )
11 eqfnfv ( ( ( 𝐴 +𝑟 𝐵 ) Fn ℝ ∧ ( 𝐵 +𝑟 𝐴 ) Fn ℝ ) → ( ( 𝐴 +𝑟 𝐵 ) = ( 𝐵 +𝑟 𝐴 ) ↔ ∀ 𝑥 ∈ ℝ ( ( 𝐴 +𝑟 𝐵 ) ‘ 𝑥 ) = ( ( 𝐵 +𝑟 𝐴 ) ‘ 𝑥 ) ) )
12 10 11 syl5ibrcom ( ( 𝐴𝐶𝐵𝐷 ) → ( ( ( 𝐴 +𝑟 𝐵 ) Fn ℝ ∧ ( 𝐵 +𝑟 𝐴 ) Fn ℝ ) → ( 𝐴 +𝑟 𝐵 ) = ( 𝐵 +𝑟 𝐴 ) ) )
13 1 3 12 mp2and ( ( 𝐴𝐶𝐵𝐷 ) → ( 𝐴 +𝑟 𝐵 ) = ( 𝐵 +𝑟 𝐴 ) )