Metamath Proof Explorer


Theorem addrcom

Description: Vector addition is commutative. (Contributed by Andrew Salmon, 28-Jan-2012)

Ref Expression
Assertion addrcom ACBDA+rB=B+rA

Proof

Step Hyp Ref Expression
1 addrfn ACBDA+rBFn
2 addrfn BDACB+rAFn
3 2 ancoms ACBDB+rAFn
4 addcomgi Ax+Bx=Bx+Ax
5 addrfv ACBDxA+rBx=Ax+Bx
6 addrfv BDACxB+rAx=Bx+Ax
7 6 3com12 ACBDxB+rAx=Bx+Ax
8 4 5 7 3eqtr4a ACBDxA+rBx=B+rAx
9 8 3expia ACBDxA+rBx=B+rAx
10 9 ralrimiv ACBDxA+rBx=B+rAx
11 eqfnfv A+rBFnB+rAFnA+rB=B+rAxA+rBx=B+rAx
12 10 11 syl5ibrcom ACBDA+rBFnB+rAFnA+rB=B+rA
13 1 3 12 mp2and ACBDA+rB=B+rA