Metamath Proof Explorer


Theorem addrcom

Description: Vector addition is commutative. (Contributed by Andrew Salmon, 28-Jan-2012)

Ref Expression
Assertion addrcom A C B D A + r B = B + r A

Proof

Step Hyp Ref Expression
1 addrfn A C B D A + r B Fn
2 addrfn B D A C B + r A Fn
3 2 ancoms A C B D B + r A Fn
4 addcomgi A x + B x = B x + A x
5 addrfv A C B D x A + r B x = A x + B x
6 addrfv B D A C x B + r A x = B x + A x
7 6 3com12 A C B D x B + r A x = B x + A x
8 4 5 7 3eqtr4a A C B D x A + r B x = B + r A x
9 8 3expia A C B D x A + r B x = B + r A x
10 9 ralrimiv A C B D x A + r B x = B + r A x
11 eqfnfv A + r B Fn B + r A Fn A + r B = B + r A x A + r B x = B + r A x
12 10 11 syl5ibrcom A C B D A + r B Fn B + r A Fn A + r B = B + r A
13 1 3 12 mp2and A C B D A + r B = B + r A