Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Andrew Salmon
Geometry
addrcom
Next ⟩
df-ptdf
Metamath Proof Explorer
Ascii
Unicode
Theorem
addrcom
Description:
Vector addition is commutative.
(Contributed by
Andrew Salmon
, 28-Jan-2012)
Ref
Expression
Assertion
addrcom
⊢
A
∈
C
∧
B
∈
D
→
A
+
r
B
=
B
+
r
A
Proof
Step
Hyp
Ref
Expression
1
addrfn
⊢
A
∈
C
∧
B
∈
D
→
A
+
r
B
Fn
ℝ
2
addrfn
⊢
B
∈
D
∧
A
∈
C
→
B
+
r
A
Fn
ℝ
3
2
ancoms
⊢
A
∈
C
∧
B
∈
D
→
B
+
r
A
Fn
ℝ
4
addcomgi
⊢
A
⁡
x
+
B
⁡
x
=
B
⁡
x
+
A
⁡
x
5
addrfv
⊢
A
∈
C
∧
B
∈
D
∧
x
∈
ℝ
→
A
+
r
B
⁡
x
=
A
⁡
x
+
B
⁡
x
6
addrfv
⊢
B
∈
D
∧
A
∈
C
∧
x
∈
ℝ
→
B
+
r
A
⁡
x
=
B
⁡
x
+
A
⁡
x
7
6
3com12
⊢
A
∈
C
∧
B
∈
D
∧
x
∈
ℝ
→
B
+
r
A
⁡
x
=
B
⁡
x
+
A
⁡
x
8
4
5
7
3eqtr4a
⊢
A
∈
C
∧
B
∈
D
∧
x
∈
ℝ
→
A
+
r
B
⁡
x
=
B
+
r
A
⁡
x
9
8
3expia
⊢
A
∈
C
∧
B
∈
D
→
x
∈
ℝ
→
A
+
r
B
⁡
x
=
B
+
r
A
⁡
x
10
9
ralrimiv
⊢
A
∈
C
∧
B
∈
D
→
∀
x
∈
ℝ
A
+
r
B
⁡
x
=
B
+
r
A
⁡
x
11
eqfnfv
⊢
A
+
r
B
Fn
ℝ
∧
B
+
r
A
Fn
ℝ
→
A
+
r
B
=
B
+
r
A
↔
∀
x
∈
ℝ
A
+
r
B
⁡
x
=
B
+
r
A
⁡
x
12
10
11
syl5ibrcom
⊢
A
∈
C
∧
B
∈
D
→
A
+
r
B
Fn
ℝ
∧
B
+
r
A
Fn
ℝ
→
A
+
r
B
=
B
+
r
A
13
1
3
12
mp2and
⊢
A
∈
C
∧
B
∈
D
→
A
+
r
B
=
B
+
r
A