| Step |
Hyp |
Ref |
Expression |
| 1 |
|
addrfn |
|- ( ( A e. C /\ B e. D ) -> ( A +r B ) Fn RR ) |
| 2 |
|
addrfn |
|- ( ( B e. D /\ A e. C ) -> ( B +r A ) Fn RR ) |
| 3 |
2
|
ancoms |
|- ( ( A e. C /\ B e. D ) -> ( B +r A ) Fn RR ) |
| 4 |
|
addcomgi |
|- ( ( A ` x ) + ( B ` x ) ) = ( ( B ` x ) + ( A ` x ) ) |
| 5 |
|
addrfv |
|- ( ( A e. C /\ B e. D /\ x e. RR ) -> ( ( A +r B ) ` x ) = ( ( A ` x ) + ( B ` x ) ) ) |
| 6 |
|
addrfv |
|- ( ( B e. D /\ A e. C /\ x e. RR ) -> ( ( B +r A ) ` x ) = ( ( B ` x ) + ( A ` x ) ) ) |
| 7 |
6
|
3com12 |
|- ( ( A e. C /\ B e. D /\ x e. RR ) -> ( ( B +r A ) ` x ) = ( ( B ` x ) + ( A ` x ) ) ) |
| 8 |
4 5 7
|
3eqtr4a |
|- ( ( A e. C /\ B e. D /\ x e. RR ) -> ( ( A +r B ) ` x ) = ( ( B +r A ) ` x ) ) |
| 9 |
8
|
3expia |
|- ( ( A e. C /\ B e. D ) -> ( x e. RR -> ( ( A +r B ) ` x ) = ( ( B +r A ) ` x ) ) ) |
| 10 |
9
|
ralrimiv |
|- ( ( A e. C /\ B e. D ) -> A. x e. RR ( ( A +r B ) ` x ) = ( ( B +r A ) ` x ) ) |
| 11 |
|
eqfnfv |
|- ( ( ( A +r B ) Fn RR /\ ( B +r A ) Fn RR ) -> ( ( A +r B ) = ( B +r A ) <-> A. x e. RR ( ( A +r B ) ` x ) = ( ( B +r A ) ` x ) ) ) |
| 12 |
10 11
|
syl5ibrcom |
|- ( ( A e. C /\ B e. D ) -> ( ( ( A +r B ) Fn RR /\ ( B +r A ) Fn RR ) -> ( A +r B ) = ( B +r A ) ) ) |
| 13 |
1 3 12
|
mp2and |
|- ( ( A e. C /\ B e. D ) -> ( A +r B ) = ( B +r A ) ) |