Step |
Hyp |
Ref |
Expression |
1 |
|
addrfn |
|- ( ( A e. C /\ B e. D ) -> ( A +r B ) Fn RR ) |
2 |
|
addrfn |
|- ( ( B e. D /\ A e. C ) -> ( B +r A ) Fn RR ) |
3 |
2
|
ancoms |
|- ( ( A e. C /\ B e. D ) -> ( B +r A ) Fn RR ) |
4 |
|
addcomgi |
|- ( ( A ` x ) + ( B ` x ) ) = ( ( B ` x ) + ( A ` x ) ) |
5 |
|
addrfv |
|- ( ( A e. C /\ B e. D /\ x e. RR ) -> ( ( A +r B ) ` x ) = ( ( A ` x ) + ( B ` x ) ) ) |
6 |
|
addrfv |
|- ( ( B e. D /\ A e. C /\ x e. RR ) -> ( ( B +r A ) ` x ) = ( ( B ` x ) + ( A ` x ) ) ) |
7 |
6
|
3com12 |
|- ( ( A e. C /\ B e. D /\ x e. RR ) -> ( ( B +r A ) ` x ) = ( ( B ` x ) + ( A ` x ) ) ) |
8 |
4 5 7
|
3eqtr4a |
|- ( ( A e. C /\ B e. D /\ x e. RR ) -> ( ( A +r B ) ` x ) = ( ( B +r A ) ` x ) ) |
9 |
8
|
3expia |
|- ( ( A e. C /\ B e. D ) -> ( x e. RR -> ( ( A +r B ) ` x ) = ( ( B +r A ) ` x ) ) ) |
10 |
9
|
ralrimiv |
|- ( ( A e. C /\ B e. D ) -> A. x e. RR ( ( A +r B ) ` x ) = ( ( B +r A ) ` x ) ) |
11 |
|
eqfnfv |
|- ( ( ( A +r B ) Fn RR /\ ( B +r A ) Fn RR ) -> ( ( A +r B ) = ( B +r A ) <-> A. x e. RR ( ( A +r B ) ` x ) = ( ( B +r A ) ` x ) ) ) |
12 |
10 11
|
syl5ibrcom |
|- ( ( A e. C /\ B e. D ) -> ( ( ( A +r B ) Fn RR /\ ( B +r A ) Fn RR ) -> ( A +r B ) = ( B +r A ) ) ) |
13 |
1 3 12
|
mp2and |
|- ( ( A e. C /\ B e. D ) -> ( A +r B ) = ( B +r A ) ) |