Metamath Proof Explorer


Theorem addrcom

Description: Vector addition is commutative. (Contributed by Andrew Salmon, 28-Jan-2012)

Ref Expression
Assertion addrcom
|- ( ( A e. C /\ B e. D ) -> ( A +r B ) = ( B +r A ) )

Proof

Step Hyp Ref Expression
1 addrfn
 |-  ( ( A e. C /\ B e. D ) -> ( A +r B ) Fn RR )
2 addrfn
 |-  ( ( B e. D /\ A e. C ) -> ( B +r A ) Fn RR )
3 2 ancoms
 |-  ( ( A e. C /\ B e. D ) -> ( B +r A ) Fn RR )
4 addcomgi
 |-  ( ( A ` x ) + ( B ` x ) ) = ( ( B ` x ) + ( A ` x ) )
5 addrfv
 |-  ( ( A e. C /\ B e. D /\ x e. RR ) -> ( ( A +r B ) ` x ) = ( ( A ` x ) + ( B ` x ) ) )
6 addrfv
 |-  ( ( B e. D /\ A e. C /\ x e. RR ) -> ( ( B +r A ) ` x ) = ( ( B ` x ) + ( A ` x ) ) )
7 6 3com12
 |-  ( ( A e. C /\ B e. D /\ x e. RR ) -> ( ( B +r A ) ` x ) = ( ( B ` x ) + ( A ` x ) ) )
8 4 5 7 3eqtr4a
 |-  ( ( A e. C /\ B e. D /\ x e. RR ) -> ( ( A +r B ) ` x ) = ( ( B +r A ) ` x ) )
9 8 3expia
 |-  ( ( A e. C /\ B e. D ) -> ( x e. RR -> ( ( A +r B ) ` x ) = ( ( B +r A ) ` x ) ) )
10 9 ralrimiv
 |-  ( ( A e. C /\ B e. D ) -> A. x e. RR ( ( A +r B ) ` x ) = ( ( B +r A ) ` x ) )
11 eqfnfv
 |-  ( ( ( A +r B ) Fn RR /\ ( B +r A ) Fn RR ) -> ( ( A +r B ) = ( B +r A ) <-> A. x e. RR ( ( A +r B ) ` x ) = ( ( B +r A ) ` x ) ) )
12 10 11 syl5ibrcom
 |-  ( ( A e. C /\ B e. D ) -> ( ( ( A +r B ) Fn RR /\ ( B +r A ) Fn RR ) -> ( A +r B ) = ( B +r A ) ) )
13 1 3 12 mp2and
 |-  ( ( A e. C /\ B e. D ) -> ( A +r B ) = ( B +r A ) )