| Step |
Hyp |
Ref |
Expression |
| 1 |
|
naddov |
|- ( ( A e. On /\ B e. On ) -> ( A +no B ) = |^| { x e. On | ( ( +no " ( { A } X. B ) ) C_ x /\ ( +no " ( A X. { B } ) ) C_ x ) } ) |
| 2 |
|
unss |
|- ( ( ( +no " ( { A } X. B ) ) C_ x /\ ( +no " ( A X. { B } ) ) C_ x ) <-> ( ( +no " ( { A } X. B ) ) u. ( +no " ( A X. { B } ) ) ) C_ x ) |
| 3 |
2
|
rabbii |
|- { x e. On | ( ( +no " ( { A } X. B ) ) C_ x /\ ( +no " ( A X. { B } ) ) C_ x ) } = { x e. On | ( ( +no " ( { A } X. B ) ) u. ( +no " ( A X. { B } ) ) ) C_ x } |
| 4 |
3
|
inteqi |
|- |^| { x e. On | ( ( +no " ( { A } X. B ) ) C_ x /\ ( +no " ( A X. { B } ) ) C_ x ) } = |^| { x e. On | ( ( +no " ( { A } X. B ) ) u. ( +no " ( A X. { B } ) ) ) C_ x } |
| 5 |
1 4
|
eqtrdi |
|- ( ( A e. On /\ B e. On ) -> ( A +no B ) = |^| { x e. On | ( ( +no " ( { A } X. B ) ) u. ( +no " ( A X. { B } ) ) ) C_ x } ) |