Metamath Proof Explorer


Theorem naddov3

Description: Alternate expression for natural addition. (Contributed by Scott Fenton, 20-Jan-2025)

Ref Expression
Assertion naddov3
|- ( ( A e. On /\ B e. On ) -> ( A +no B ) = |^| { x e. On | ( ( +no " ( { A } X. B ) ) u. ( +no " ( A X. { B } ) ) ) C_ x } )

Proof

Step Hyp Ref Expression
1 naddov
 |-  ( ( A e. On /\ B e. On ) -> ( A +no B ) = |^| { x e. On | ( ( +no " ( { A } X. B ) ) C_ x /\ ( +no " ( A X. { B } ) ) C_ x ) } )
2 unss
 |-  ( ( ( +no " ( { A } X. B ) ) C_ x /\ ( +no " ( A X. { B } ) ) C_ x ) <-> ( ( +no " ( { A } X. B ) ) u. ( +no " ( A X. { B } ) ) ) C_ x )
3 2 rabbii
 |-  { x e. On | ( ( +no " ( { A } X. B ) ) C_ x /\ ( +no " ( A X. { B } ) ) C_ x ) } = { x e. On | ( ( +no " ( { A } X. B ) ) u. ( +no " ( A X. { B } ) ) ) C_ x }
4 3 inteqi
 |-  |^| { x e. On | ( ( +no " ( { A } X. B ) ) C_ x /\ ( +no " ( A X. { B } ) ) C_ x ) } = |^| { x e. On | ( ( +no " ( { A } X. B ) ) u. ( +no " ( A X. { B } ) ) ) C_ x }
5 1 4 eqtrdi
 |-  ( ( A e. On /\ B e. On ) -> ( A +no B ) = |^| { x e. On | ( ( +no " ( { A } X. B ) ) u. ( +no " ( A X. { B } ) ) ) C_ x } )