Metamath Proof Explorer


Theorem naddov3

Description: Alternate expression for natural addition. (Contributed by Scott Fenton, 20-Jan-2025)

Ref Expression
Assertion naddov3 Could not format assertion : No typesetting found for |- ( ( A e. On /\ B e. On ) -> ( A +no B ) = |^| { x e. On | ( ( +no " ( { A } X. B ) ) u. ( +no " ( A X. { B } ) ) ) C_ x } ) with typecode |-

Proof

Step Hyp Ref Expression
1 naddov Could not format ( ( A e. On /\ B e. On ) -> ( A +no B ) = |^| { x e. On | ( ( +no " ( { A } X. B ) ) C_ x /\ ( +no " ( A X. { B } ) ) C_ x ) } ) : No typesetting found for |- ( ( A e. On /\ B e. On ) -> ( A +no B ) = |^| { x e. On | ( ( +no " ( { A } X. B ) ) C_ x /\ ( +no " ( A X. { B } ) ) C_ x ) } ) with typecode |-
2 unss Could not format ( ( ( +no " ( { A } X. B ) ) C_ x /\ ( +no " ( A X. { B } ) ) C_ x ) <-> ( ( +no " ( { A } X. B ) ) u. ( +no " ( A X. { B } ) ) ) C_ x ) : No typesetting found for |- ( ( ( +no " ( { A } X. B ) ) C_ x /\ ( +no " ( A X. { B } ) ) C_ x ) <-> ( ( +no " ( { A } X. B ) ) u. ( +no " ( A X. { B } ) ) ) C_ x ) with typecode |-
3 2 rabbii Could not format { x e. On | ( ( +no " ( { A } X. B ) ) C_ x /\ ( +no " ( A X. { B } ) ) C_ x ) } = { x e. On | ( ( +no " ( { A } X. B ) ) u. ( +no " ( A X. { B } ) ) ) C_ x } : No typesetting found for |- { x e. On | ( ( +no " ( { A } X. B ) ) C_ x /\ ( +no " ( A X. { B } ) ) C_ x ) } = { x e. On | ( ( +no " ( { A } X. B ) ) u. ( +no " ( A X. { B } ) ) ) C_ x } with typecode |-
4 3 inteqi Could not format |^| { x e. On | ( ( +no " ( { A } X. B ) ) C_ x /\ ( +no " ( A X. { B } ) ) C_ x ) } = |^| { x e. On | ( ( +no " ( { A } X. B ) ) u. ( +no " ( A X. { B } ) ) ) C_ x } : No typesetting found for |- |^| { x e. On | ( ( +no " ( { A } X. B ) ) C_ x /\ ( +no " ( A X. { B } ) ) C_ x ) } = |^| { x e. On | ( ( +no " ( { A } X. B ) ) u. ( +no " ( A X. { B } ) ) ) C_ x } with typecode |-
5 1 4 eqtrdi Could not format ( ( A e. On /\ B e. On ) -> ( A +no B ) = |^| { x e. On | ( ( +no " ( { A } X. B ) ) u. ( +no " ( A X. { B } ) ) ) C_ x } ) : No typesetting found for |- ( ( A e. On /\ B e. On ) -> ( A +no B ) = |^| { x e. On | ( ( +no " ( { A } X. B ) ) u. ( +no " ( A X. { B } ) ) ) C_ x } ) with typecode |-