Metamath Proof Explorer


Theorem nanorxor

Description: 'nand' is equivalent to the equivalence of inclusive and exclusive or. (Contributed by Steve Rodriguez, 28-Feb-2020)

Ref Expression
Assertion nanorxor
|- ( ( ph -/\ ps ) <-> ( ( ph \/ ps ) <-> ( ph \/_ ps ) ) )

Proof

Step Hyp Ref Expression
1 df-nan
 |-  ( ( ph -/\ ps ) <-> -. ( ph /\ ps ) )
2 xor2
 |-  ( ( ph \/_ ps ) <-> ( ( ph \/ ps ) /\ -. ( ph /\ ps ) ) )
3 2 rbaibr
 |-  ( -. ( ph /\ ps ) -> ( ( ph \/ ps ) <-> ( ph \/_ ps ) ) )
4 2 bibi2i
 |-  ( ( ( ph \/ ps ) <-> ( ph \/_ ps ) ) <-> ( ( ph \/ ps ) <-> ( ( ph \/ ps ) /\ -. ( ph /\ ps ) ) ) )
5 pm4.71
 |-  ( ( ( ph \/ ps ) -> -. ( ph /\ ps ) ) <-> ( ( ph \/ ps ) <-> ( ( ph \/ ps ) /\ -. ( ph /\ ps ) ) ) )
6 simpl
 |-  ( ( ph /\ ps ) -> ph )
7 6 orcd
 |-  ( ( ph /\ ps ) -> ( ph \/ ps ) )
8 7 con3i
 |-  ( -. ( ph \/ ps ) -> -. ( ph /\ ps ) )
9 id
 |-  ( -. ( ph /\ ps ) -> -. ( ph /\ ps ) )
10 8 9 ja
 |-  ( ( ( ph \/ ps ) -> -. ( ph /\ ps ) ) -> -. ( ph /\ ps ) )
11 5 10 sylbir
 |-  ( ( ( ph \/ ps ) <-> ( ( ph \/ ps ) /\ -. ( ph /\ ps ) ) ) -> -. ( ph /\ ps ) )
12 4 11 sylbi
 |-  ( ( ( ph \/ ps ) <-> ( ph \/_ ps ) ) -> -. ( ph /\ ps ) )
13 3 12 impbii
 |-  ( -. ( ph /\ ps ) <-> ( ( ph \/ ps ) <-> ( ph \/_ ps ) ) )
14 1 13 bitri
 |-  ( ( ph -/\ ps ) <-> ( ( ph \/ ps ) <-> ( ph \/_ ps ) ) )