Metamath Proof Explorer


Theorem nanorxor

Description: 'nand' is equivalent to the equivalence of inclusive and exclusive or. (Contributed by Steve Rodriguez, 28-Feb-2020)

Ref Expression
Assertion nanorxor ( ( 𝜑𝜓 ) ↔ ( ( 𝜑𝜓 ) ↔ ( 𝜑𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 df-nan ( ( 𝜑𝜓 ) ↔ ¬ ( 𝜑𝜓 ) )
2 xor2 ( ( 𝜑𝜓 ) ↔ ( ( 𝜑𝜓 ) ∧ ¬ ( 𝜑𝜓 ) ) )
3 2 rbaibr ( ¬ ( 𝜑𝜓 ) → ( ( 𝜑𝜓 ) ↔ ( 𝜑𝜓 ) ) )
4 2 bibi2i ( ( ( 𝜑𝜓 ) ↔ ( 𝜑𝜓 ) ) ↔ ( ( 𝜑𝜓 ) ↔ ( ( 𝜑𝜓 ) ∧ ¬ ( 𝜑𝜓 ) ) ) )
5 pm4.71 ( ( ( 𝜑𝜓 ) → ¬ ( 𝜑𝜓 ) ) ↔ ( ( 𝜑𝜓 ) ↔ ( ( 𝜑𝜓 ) ∧ ¬ ( 𝜑𝜓 ) ) ) )
6 simpl ( ( 𝜑𝜓 ) → 𝜑 )
7 6 orcd ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) )
8 7 con3i ( ¬ ( 𝜑𝜓 ) → ¬ ( 𝜑𝜓 ) )
9 id ( ¬ ( 𝜑𝜓 ) → ¬ ( 𝜑𝜓 ) )
10 8 9 ja ( ( ( 𝜑𝜓 ) → ¬ ( 𝜑𝜓 ) ) → ¬ ( 𝜑𝜓 ) )
11 5 10 sylbir ( ( ( 𝜑𝜓 ) ↔ ( ( 𝜑𝜓 ) ∧ ¬ ( 𝜑𝜓 ) ) ) → ¬ ( 𝜑𝜓 ) )
12 4 11 sylbi ( ( ( 𝜑𝜓 ) ↔ ( 𝜑𝜓 ) ) → ¬ ( 𝜑𝜓 ) )
13 3 12 impbii ( ¬ ( 𝜑𝜓 ) ↔ ( ( 𝜑𝜓 ) ↔ ( 𝜑𝜓 ) ) )
14 1 13 bitri ( ( 𝜑𝜓 ) ↔ ( ( 𝜑𝜓 ) ↔ ( 𝜑𝜓 ) ) )