| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-nan |
⊢ ( ( 𝜑 ⊼ 𝜓 ) ↔ ¬ ( 𝜑 ∧ 𝜓 ) ) |
| 2 |
|
xor2 |
⊢ ( ( 𝜑 ⊻ 𝜓 ) ↔ ( ( 𝜑 ∨ 𝜓 ) ∧ ¬ ( 𝜑 ∧ 𝜓 ) ) ) |
| 3 |
2
|
rbaibr |
⊢ ( ¬ ( 𝜑 ∧ 𝜓 ) → ( ( 𝜑 ∨ 𝜓 ) ↔ ( 𝜑 ⊻ 𝜓 ) ) ) |
| 4 |
2
|
bibi2i |
⊢ ( ( ( 𝜑 ∨ 𝜓 ) ↔ ( 𝜑 ⊻ 𝜓 ) ) ↔ ( ( 𝜑 ∨ 𝜓 ) ↔ ( ( 𝜑 ∨ 𝜓 ) ∧ ¬ ( 𝜑 ∧ 𝜓 ) ) ) ) |
| 5 |
|
pm4.71 |
⊢ ( ( ( 𝜑 ∨ 𝜓 ) → ¬ ( 𝜑 ∧ 𝜓 ) ) ↔ ( ( 𝜑 ∨ 𝜓 ) ↔ ( ( 𝜑 ∨ 𝜓 ) ∧ ¬ ( 𝜑 ∧ 𝜓 ) ) ) ) |
| 6 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜑 ) |
| 7 |
6
|
orcd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝜑 ∨ 𝜓 ) ) |
| 8 |
7
|
con3i |
⊢ ( ¬ ( 𝜑 ∨ 𝜓 ) → ¬ ( 𝜑 ∧ 𝜓 ) ) |
| 9 |
|
id |
⊢ ( ¬ ( 𝜑 ∧ 𝜓 ) → ¬ ( 𝜑 ∧ 𝜓 ) ) |
| 10 |
8 9
|
ja |
⊢ ( ( ( 𝜑 ∨ 𝜓 ) → ¬ ( 𝜑 ∧ 𝜓 ) ) → ¬ ( 𝜑 ∧ 𝜓 ) ) |
| 11 |
5 10
|
sylbir |
⊢ ( ( ( 𝜑 ∨ 𝜓 ) ↔ ( ( 𝜑 ∨ 𝜓 ) ∧ ¬ ( 𝜑 ∧ 𝜓 ) ) ) → ¬ ( 𝜑 ∧ 𝜓 ) ) |
| 12 |
4 11
|
sylbi |
⊢ ( ( ( 𝜑 ∨ 𝜓 ) ↔ ( 𝜑 ⊻ 𝜓 ) ) → ¬ ( 𝜑 ∧ 𝜓 ) ) |
| 13 |
3 12
|
impbii |
⊢ ( ¬ ( 𝜑 ∧ 𝜓 ) ↔ ( ( 𝜑 ∨ 𝜓 ) ↔ ( 𝜑 ⊻ 𝜓 ) ) ) |
| 14 |
1 13
|
bitri |
⊢ ( ( 𝜑 ⊼ 𝜓 ) ↔ ( ( 𝜑 ∨ 𝜓 ) ↔ ( 𝜑 ⊻ 𝜓 ) ) ) |