Metamath Proof Explorer


Theorem undisjrab

Description: Union of two disjoint restricted class abstractions; compare unrab . (Contributed by Steve Rodriguez, 28-Feb-2020)

Ref Expression
Assertion undisjrab ( ( { 𝑥𝐴𝜑 } ∩ { 𝑥𝐴𝜓 } ) = ∅ ↔ ( { 𝑥𝐴𝜑 } ∪ { 𝑥𝐴𝜓 } ) = { 𝑥𝐴 ∣ ( 𝜑𝜓 ) } )

Proof

Step Hyp Ref Expression
1 rabeq0 ( { 𝑥𝐴 ∣ ( 𝜑𝜓 ) } = ∅ ↔ ∀ 𝑥𝐴 ¬ ( 𝜑𝜓 ) )
2 df-nan ( ( 𝜑𝜓 ) ↔ ¬ ( 𝜑𝜓 ) )
3 nanorxor ( ( 𝜑𝜓 ) ↔ ( ( 𝜑𝜓 ) ↔ ( 𝜑𝜓 ) ) )
4 2 3 bitr3i ( ¬ ( 𝜑𝜓 ) ↔ ( ( 𝜑𝜓 ) ↔ ( 𝜑𝜓 ) ) )
5 4 ralbii ( ∀ 𝑥𝐴 ¬ ( 𝜑𝜓 ) ↔ ∀ 𝑥𝐴 ( ( 𝜑𝜓 ) ↔ ( 𝜑𝜓 ) ) )
6 rabbi ( ∀ 𝑥𝐴 ( ( 𝜑𝜓 ) ↔ ( 𝜑𝜓 ) ) ↔ { 𝑥𝐴 ∣ ( 𝜑𝜓 ) } = { 𝑥𝐴 ∣ ( 𝜑𝜓 ) } )
7 1 5 6 3bitri ( { 𝑥𝐴 ∣ ( 𝜑𝜓 ) } = ∅ ↔ { 𝑥𝐴 ∣ ( 𝜑𝜓 ) } = { 𝑥𝐴 ∣ ( 𝜑𝜓 ) } )
8 inrab ( { 𝑥𝐴𝜑 } ∩ { 𝑥𝐴𝜓 } ) = { 𝑥𝐴 ∣ ( 𝜑𝜓 ) }
9 8 eqeq1i ( ( { 𝑥𝐴𝜑 } ∩ { 𝑥𝐴𝜓 } ) = ∅ ↔ { 𝑥𝐴 ∣ ( 𝜑𝜓 ) } = ∅ )
10 unrab ( { 𝑥𝐴𝜑 } ∪ { 𝑥𝐴𝜓 } ) = { 𝑥𝐴 ∣ ( 𝜑𝜓 ) }
11 10 eqeq1i ( ( { 𝑥𝐴𝜑 } ∪ { 𝑥𝐴𝜓 } ) = { 𝑥𝐴 ∣ ( 𝜑𝜓 ) } ↔ { 𝑥𝐴 ∣ ( 𝜑𝜓 ) } = { 𝑥𝐴 ∣ ( 𝜑𝜓 ) } )
12 7 9 11 3bitr4i ( ( { 𝑥𝐴𝜑 } ∩ { 𝑥𝐴𝜓 } ) = ∅ ↔ ( { 𝑥𝐴𝜑 } ∪ { 𝑥𝐴𝜓 } ) = { 𝑥𝐴 ∣ ( 𝜑𝜓 ) } )