| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rabeq0 | ⊢ ( { 𝑥  ∈  𝐴  ∣  ( 𝜑  ∧  𝜓 ) }  =  ∅  ↔  ∀ 𝑥  ∈  𝐴 ¬  ( 𝜑  ∧  𝜓 ) ) | 
						
							| 2 |  | df-nan | ⊢ ( ( 𝜑  ⊼  𝜓 )  ↔  ¬  ( 𝜑  ∧  𝜓 ) ) | 
						
							| 3 |  | nanorxor | ⊢ ( ( 𝜑  ⊼  𝜓 )  ↔  ( ( 𝜑  ∨  𝜓 )  ↔  ( 𝜑  ⊻  𝜓 ) ) ) | 
						
							| 4 | 2 3 | bitr3i | ⊢ ( ¬  ( 𝜑  ∧  𝜓 )  ↔  ( ( 𝜑  ∨  𝜓 )  ↔  ( 𝜑  ⊻  𝜓 ) ) ) | 
						
							| 5 | 4 | ralbii | ⊢ ( ∀ 𝑥  ∈  𝐴 ¬  ( 𝜑  ∧  𝜓 )  ↔  ∀ 𝑥  ∈  𝐴 ( ( 𝜑  ∨  𝜓 )  ↔  ( 𝜑  ⊻  𝜓 ) ) ) | 
						
							| 6 |  | rabbi | ⊢ ( ∀ 𝑥  ∈  𝐴 ( ( 𝜑  ∨  𝜓 )  ↔  ( 𝜑  ⊻  𝜓 ) )  ↔  { 𝑥  ∈  𝐴  ∣  ( 𝜑  ∨  𝜓 ) }  =  { 𝑥  ∈  𝐴  ∣  ( 𝜑  ⊻  𝜓 ) } ) | 
						
							| 7 | 1 5 6 | 3bitri | ⊢ ( { 𝑥  ∈  𝐴  ∣  ( 𝜑  ∧  𝜓 ) }  =  ∅  ↔  { 𝑥  ∈  𝐴  ∣  ( 𝜑  ∨  𝜓 ) }  =  { 𝑥  ∈  𝐴  ∣  ( 𝜑  ⊻  𝜓 ) } ) | 
						
							| 8 |  | inrab | ⊢ ( { 𝑥  ∈  𝐴  ∣  𝜑 }  ∩  { 𝑥  ∈  𝐴  ∣  𝜓 } )  =  { 𝑥  ∈  𝐴  ∣  ( 𝜑  ∧  𝜓 ) } | 
						
							| 9 | 8 | eqeq1i | ⊢ ( ( { 𝑥  ∈  𝐴  ∣  𝜑 }  ∩  { 𝑥  ∈  𝐴  ∣  𝜓 } )  =  ∅  ↔  { 𝑥  ∈  𝐴  ∣  ( 𝜑  ∧  𝜓 ) }  =  ∅ ) | 
						
							| 10 |  | unrab | ⊢ ( { 𝑥  ∈  𝐴  ∣  𝜑 }  ∪  { 𝑥  ∈  𝐴  ∣  𝜓 } )  =  { 𝑥  ∈  𝐴  ∣  ( 𝜑  ∨  𝜓 ) } | 
						
							| 11 | 10 | eqeq1i | ⊢ ( ( { 𝑥  ∈  𝐴  ∣  𝜑 }  ∪  { 𝑥  ∈  𝐴  ∣  𝜓 } )  =  { 𝑥  ∈  𝐴  ∣  ( 𝜑  ⊻  𝜓 ) }  ↔  { 𝑥  ∈  𝐴  ∣  ( 𝜑  ∨  𝜓 ) }  =  { 𝑥  ∈  𝐴  ∣  ( 𝜑  ⊻  𝜓 ) } ) | 
						
							| 12 | 7 9 11 | 3bitr4i | ⊢ ( ( { 𝑥  ∈  𝐴  ∣  𝜑 }  ∩  { 𝑥  ∈  𝐴  ∣  𝜓 } )  =  ∅  ↔  ( { 𝑥  ∈  𝐴  ∣  𝜑 }  ∪  { 𝑥  ∈  𝐴  ∣  𝜓 } )  =  { 𝑥  ∈  𝐴  ∣  ( 𝜑  ⊻  𝜓 ) } ) |