Step |
Hyp |
Ref |
Expression |
1 |
|
rabeq0 |
⊢ ( { 𝑥 ∈ 𝐴 ∣ ( 𝜑 ∧ 𝜓 ) } = ∅ ↔ ∀ 𝑥 ∈ 𝐴 ¬ ( 𝜑 ∧ 𝜓 ) ) |
2 |
|
df-nan |
⊢ ( ( 𝜑 ⊼ 𝜓 ) ↔ ¬ ( 𝜑 ∧ 𝜓 ) ) |
3 |
|
nanorxor |
⊢ ( ( 𝜑 ⊼ 𝜓 ) ↔ ( ( 𝜑 ∨ 𝜓 ) ↔ ( 𝜑 ⊻ 𝜓 ) ) ) |
4 |
2 3
|
bitr3i |
⊢ ( ¬ ( 𝜑 ∧ 𝜓 ) ↔ ( ( 𝜑 ∨ 𝜓 ) ↔ ( 𝜑 ⊻ 𝜓 ) ) ) |
5 |
4
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ ( 𝜑 ∧ 𝜓 ) ↔ ∀ 𝑥 ∈ 𝐴 ( ( 𝜑 ∨ 𝜓 ) ↔ ( 𝜑 ⊻ 𝜓 ) ) ) |
6 |
|
rabbi |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( ( 𝜑 ∨ 𝜓 ) ↔ ( 𝜑 ⊻ 𝜓 ) ) ↔ { 𝑥 ∈ 𝐴 ∣ ( 𝜑 ∨ 𝜓 ) } = { 𝑥 ∈ 𝐴 ∣ ( 𝜑 ⊻ 𝜓 ) } ) |
7 |
1 5 6
|
3bitri |
⊢ ( { 𝑥 ∈ 𝐴 ∣ ( 𝜑 ∧ 𝜓 ) } = ∅ ↔ { 𝑥 ∈ 𝐴 ∣ ( 𝜑 ∨ 𝜓 ) } = { 𝑥 ∈ 𝐴 ∣ ( 𝜑 ⊻ 𝜓 ) } ) |
8 |
|
inrab |
⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∩ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) = { 𝑥 ∈ 𝐴 ∣ ( 𝜑 ∧ 𝜓 ) } |
9 |
8
|
eqeq1i |
⊢ ( ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∩ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) = ∅ ↔ { 𝑥 ∈ 𝐴 ∣ ( 𝜑 ∧ 𝜓 ) } = ∅ ) |
10 |
|
unrab |
⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∪ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) = { 𝑥 ∈ 𝐴 ∣ ( 𝜑 ∨ 𝜓 ) } |
11 |
10
|
eqeq1i |
⊢ ( ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∪ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) = { 𝑥 ∈ 𝐴 ∣ ( 𝜑 ⊻ 𝜓 ) } ↔ { 𝑥 ∈ 𝐴 ∣ ( 𝜑 ∨ 𝜓 ) } = { 𝑥 ∈ 𝐴 ∣ ( 𝜑 ⊻ 𝜓 ) } ) |
12 |
7 9 11
|
3bitr4i |
⊢ ( ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∩ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) = ∅ ↔ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∪ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) = { 𝑥 ∈ 𝐴 ∣ ( 𝜑 ⊻ 𝜓 ) } ) |