Description: In an empty graph (with no edges), every vertex has no neighbor. (Contributed by Alexander van der Vekens, 12-Oct-2017) (Revised by AV, 26-Oct-2020) (Proof shortened by AV, 15-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nbgr0edg | |- ( ( Edg ` G ) = (/) -> ( G NeighbVtx K ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rzal | |- ( ( Edg ` G ) = (/) -> A. e e. ( Edg ` G ) -. { K , n } C_ e ) |
|
| 2 | ralnex | |- ( A. e e. ( Edg ` G ) -. { K , n } C_ e <-> -. E. e e. ( Edg ` G ) { K , n } C_ e ) |
|
| 3 | 1 2 | sylib | |- ( ( Edg ` G ) = (/) -> -. E. e e. ( Edg ` G ) { K , n } C_ e ) |
| 4 | 3 | ralrimivw | |- ( ( Edg ` G ) = (/) -> A. n e. ( ( Vtx ` G ) \ { K } ) -. E. e e. ( Edg ` G ) { K , n } C_ e ) |
| 5 | 4 | nbgr0edglem | |- ( ( Edg ` G ) = (/) -> ( G NeighbVtx K ) = (/) ) |