Metamath Proof Explorer


Theorem nbgr0edg

Description: In an empty graph (with no edges), every vertex has no neighbor. (Contributed by Alexander van der Vekens, 12-Oct-2017) (Revised by AV, 26-Oct-2020) (Proof shortened by AV, 15-Nov-2020)

Ref Expression
Assertion nbgr0edg
|- ( ( Edg ` G ) = (/) -> ( G NeighbVtx K ) = (/) )

Proof

Step Hyp Ref Expression
1 rzal
 |-  ( ( Edg ` G ) = (/) -> A. e e. ( Edg ` G ) -. { K , n } C_ e )
2 ralnex
 |-  ( A. e e. ( Edg ` G ) -. { K , n } C_ e <-> -. E. e e. ( Edg ` G ) { K , n } C_ e )
3 1 2 sylib
 |-  ( ( Edg ` G ) = (/) -> -. E. e e. ( Edg ` G ) { K , n } C_ e )
4 3 ralrimivw
 |-  ( ( Edg ` G ) = (/) -> A. n e. ( ( Vtx ` G ) \ { K } ) -. E. e e. ( Edg ` G ) { K , n } C_ e )
5 4 nbgr0vtxlem
 |-  ( ( Edg ` G ) = (/) -> ( G NeighbVtx K ) = (/) )