Step |
Hyp |
Ref |
Expression |
1 |
|
uvtxnm1nbgr.v |
|- V = ( Vtx ` G ) |
2 |
1
|
nbgrssovtx |
|- ( G NeighbVtx U ) C_ ( V \ { U } ) |
3 |
2
|
sseli |
|- ( v e. ( G NeighbVtx U ) -> v e. ( V \ { U } ) ) |
4 |
|
eldifsn |
|- ( v e. ( V \ { U } ) <-> ( v e. V /\ v =/= U ) ) |
5 |
1
|
nbusgrvtxm1 |
|- ( ( G e. FinUSGraph /\ U e. V ) -> ( ( # ` ( G NeighbVtx U ) ) = ( ( # ` V ) - 1 ) -> ( ( v e. V /\ v =/= U ) -> v e. ( G NeighbVtx U ) ) ) ) |
6 |
5
|
imp |
|- ( ( ( G e. FinUSGraph /\ U e. V ) /\ ( # ` ( G NeighbVtx U ) ) = ( ( # ` V ) - 1 ) ) -> ( ( v e. V /\ v =/= U ) -> v e. ( G NeighbVtx U ) ) ) |
7 |
4 6
|
syl5bi |
|- ( ( ( G e. FinUSGraph /\ U e. V ) /\ ( # ` ( G NeighbVtx U ) ) = ( ( # ` V ) - 1 ) ) -> ( v e. ( V \ { U } ) -> v e. ( G NeighbVtx U ) ) ) |
8 |
3 7
|
impbid2 |
|- ( ( ( G e. FinUSGraph /\ U e. V ) /\ ( # ` ( G NeighbVtx U ) ) = ( ( # ` V ) - 1 ) ) -> ( v e. ( G NeighbVtx U ) <-> v e. ( V \ { U } ) ) ) |
9 |
8
|
eqrdv |
|- ( ( ( G e. FinUSGraph /\ U e. V ) /\ ( # ` ( G NeighbVtx U ) ) = ( ( # ` V ) - 1 ) ) -> ( G NeighbVtx U ) = ( V \ { U } ) ) |
10 |
1
|
uvtxnbgrb |
|- ( U e. V -> ( U e. ( UnivVtx ` G ) <-> ( G NeighbVtx U ) = ( V \ { U } ) ) ) |
11 |
10
|
ad2antlr |
|- ( ( ( G e. FinUSGraph /\ U e. V ) /\ ( # ` ( G NeighbVtx U ) ) = ( ( # ` V ) - 1 ) ) -> ( U e. ( UnivVtx ` G ) <-> ( G NeighbVtx U ) = ( V \ { U } ) ) ) |
12 |
9 11
|
mpbird |
|- ( ( ( G e. FinUSGraph /\ U e. V ) /\ ( # ` ( G NeighbVtx U ) ) = ( ( # ` V ) - 1 ) ) -> U e. ( UnivVtx ` G ) ) |
13 |
12
|
ex |
|- ( ( G e. FinUSGraph /\ U e. V ) -> ( ( # ` ( G NeighbVtx U ) ) = ( ( # ` V ) - 1 ) -> U e. ( UnivVtx ` G ) ) ) |