Metamath Proof Explorer


Theorem neicvgnvor

Description: If neighborhood and convergent functions are related by operator H , the relationship holds with the functions swapped. (Contributed by RP, 11-Jun-2021)

Ref Expression
Hypotheses neicvg.o
|- O = ( i e. _V , j e. _V |-> ( k e. ( ~P j ^m i ) |-> ( l e. j |-> { m e. i | l e. ( k ` m ) } ) ) )
neicvg.p
|- P = ( n e. _V |-> ( p e. ( ~P n ^m ~P n ) |-> ( o e. ~P n |-> ( n \ ( p ` ( n \ o ) ) ) ) ) )
neicvg.d
|- D = ( P ` B )
neicvg.f
|- F = ( ~P B O B )
neicvg.g
|- G = ( B O ~P B )
neicvg.h
|- H = ( F o. ( D o. G ) )
neicvg.r
|- ( ph -> N H M )
Assertion neicvgnvor
|- ( ph -> M H N )

Proof

Step Hyp Ref Expression
1 neicvg.o
 |-  O = ( i e. _V , j e. _V |-> ( k e. ( ~P j ^m i ) |-> ( l e. j |-> { m e. i | l e. ( k ` m ) } ) ) )
2 neicvg.p
 |-  P = ( n e. _V |-> ( p e. ( ~P n ^m ~P n ) |-> ( o e. ~P n |-> ( n \ ( p ` ( n \ o ) ) ) ) ) )
3 neicvg.d
 |-  D = ( P ` B )
4 neicvg.f
 |-  F = ( ~P B O B )
5 neicvg.g
 |-  G = ( B O ~P B )
6 neicvg.h
 |-  H = ( F o. ( D o. G ) )
7 neicvg.r
 |-  ( ph -> N H M )
8 1 2 3 4 5 6 7 neicvgnvo
 |-  ( ph -> `' H = H )
9 8 breqd
 |-  ( ph -> ( N `' H M <-> N H M ) )
10 7 9 mpbird
 |-  ( ph -> N `' H M )
11 relco
 |-  Rel ( F o. ( D o. G ) )
12 6 releqi
 |-  ( Rel H <-> Rel ( F o. ( D o. G ) ) )
13 11 12 mpbir
 |-  Rel H
14 13 relbrcnv
 |-  ( N `' H M <-> M H N )
15 10 14 sylib
 |-  ( ph -> M H N )