Description: If neighborhood and convergent functions are related by operator H , the relationship holds with the functions swapped. (Contributed by RP, 11-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | neicvg.o | |- O = ( i e. _V , j e. _V |-> ( k e. ( ~P j ^m i ) |-> ( l e. j |-> { m e. i | l e. ( k ` m ) } ) ) ) |
|
neicvg.p | |- P = ( n e. _V |-> ( p e. ( ~P n ^m ~P n ) |-> ( o e. ~P n |-> ( n \ ( p ` ( n \ o ) ) ) ) ) ) |
||
neicvg.d | |- D = ( P ` B ) |
||
neicvg.f | |- F = ( ~P B O B ) |
||
neicvg.g | |- G = ( B O ~P B ) |
||
neicvg.h | |- H = ( F o. ( D o. G ) ) |
||
neicvg.r | |- ( ph -> N H M ) |
||
Assertion | neicvgnvor | |- ( ph -> M H N ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neicvg.o | |- O = ( i e. _V , j e. _V |-> ( k e. ( ~P j ^m i ) |-> ( l e. j |-> { m e. i | l e. ( k ` m ) } ) ) ) |
|
2 | neicvg.p | |- P = ( n e. _V |-> ( p e. ( ~P n ^m ~P n ) |-> ( o e. ~P n |-> ( n \ ( p ` ( n \ o ) ) ) ) ) ) |
|
3 | neicvg.d | |- D = ( P ` B ) |
|
4 | neicvg.f | |- F = ( ~P B O B ) |
|
5 | neicvg.g | |- G = ( B O ~P B ) |
|
6 | neicvg.h | |- H = ( F o. ( D o. G ) ) |
|
7 | neicvg.r | |- ( ph -> N H M ) |
|
8 | 1 2 3 4 5 6 7 | neicvgnvo | |- ( ph -> `' H = H ) |
9 | 8 | breqd | |- ( ph -> ( N `' H M <-> N H M ) ) |
10 | 7 9 | mpbird | |- ( ph -> N `' H M ) |
11 | relco | |- Rel ( F o. ( D o. G ) ) |
|
12 | 6 | releqi | |- ( Rel H <-> Rel ( F o. ( D o. G ) ) ) |
13 | 11 12 | mpbir | |- Rel H |
14 | 13 | relbrcnv | |- ( N `' H M <-> M H N ) |
15 | 10 14 | sylib | |- ( ph -> M H N ) |