Step |
Hyp |
Ref |
Expression |
1 |
|
neicvg.o |
⊢ 𝑂 = ( 𝑖 ∈ V , 𝑗 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑗 ↑m 𝑖 ) ↦ ( 𝑙 ∈ 𝑗 ↦ { 𝑚 ∈ 𝑖 ∣ 𝑙 ∈ ( 𝑘 ‘ 𝑚 ) } ) ) ) |
2 |
|
neicvg.p |
⊢ 𝑃 = ( 𝑛 ∈ V ↦ ( 𝑝 ∈ ( 𝒫 𝑛 ↑m 𝒫 𝑛 ) ↦ ( 𝑜 ∈ 𝒫 𝑛 ↦ ( 𝑛 ∖ ( 𝑝 ‘ ( 𝑛 ∖ 𝑜 ) ) ) ) ) ) |
3 |
|
neicvg.d |
⊢ 𝐷 = ( 𝑃 ‘ 𝐵 ) |
4 |
|
neicvg.f |
⊢ 𝐹 = ( 𝒫 𝐵 𝑂 𝐵 ) |
5 |
|
neicvg.g |
⊢ 𝐺 = ( 𝐵 𝑂 𝒫 𝐵 ) |
6 |
|
neicvg.h |
⊢ 𝐻 = ( 𝐹 ∘ ( 𝐷 ∘ 𝐺 ) ) |
7 |
|
neicvg.r |
⊢ ( 𝜑 → 𝑁 𝐻 𝑀 ) |
8 |
1 2 3 4 5 6 7
|
neicvgnvo |
⊢ ( 𝜑 → ◡ 𝐻 = 𝐻 ) |
9 |
8
|
breqd |
⊢ ( 𝜑 → ( 𝑁 ◡ 𝐻 𝑀 ↔ 𝑁 𝐻 𝑀 ) ) |
10 |
7 9
|
mpbird |
⊢ ( 𝜑 → 𝑁 ◡ 𝐻 𝑀 ) |
11 |
|
relco |
⊢ Rel ( 𝐹 ∘ ( 𝐷 ∘ 𝐺 ) ) |
12 |
6
|
releqi |
⊢ ( Rel 𝐻 ↔ Rel ( 𝐹 ∘ ( 𝐷 ∘ 𝐺 ) ) ) |
13 |
11 12
|
mpbir |
⊢ Rel 𝐻 |
14 |
13
|
relbrcnv |
⊢ ( 𝑁 ◡ 𝐻 𝑀 ↔ 𝑀 𝐻 𝑁 ) |
15 |
10 14
|
sylib |
⊢ ( 𝜑 → 𝑀 𝐻 𝑁 ) |