Metamath Proof Explorer


Theorem neicvgnvor

Description: If neighborhood and convergent functions are related by operator H , the relationship holds with the functions swapped. (Contributed by RP, 11-Jun-2021)

Ref Expression
Hypotheses neicvg.o 𝑂 = ( 𝑖 ∈ V , 𝑗 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑗m 𝑖 ) ↦ ( 𝑙𝑗 ↦ { 𝑚𝑖𝑙 ∈ ( 𝑘𝑚 ) } ) ) )
neicvg.p 𝑃 = ( 𝑛 ∈ V ↦ ( 𝑝 ∈ ( 𝒫 𝑛m 𝒫 𝑛 ) ↦ ( 𝑜 ∈ 𝒫 𝑛 ↦ ( 𝑛 ∖ ( 𝑝 ‘ ( 𝑛𝑜 ) ) ) ) ) )
neicvg.d 𝐷 = ( 𝑃𝐵 )
neicvg.f 𝐹 = ( 𝒫 𝐵 𝑂 𝐵 )
neicvg.g 𝐺 = ( 𝐵 𝑂 𝒫 𝐵 )
neicvg.h 𝐻 = ( 𝐹 ∘ ( 𝐷𝐺 ) )
neicvg.r ( 𝜑𝑁 𝐻 𝑀 )
Assertion neicvgnvor ( 𝜑𝑀 𝐻 𝑁 )

Proof

Step Hyp Ref Expression
1 neicvg.o 𝑂 = ( 𝑖 ∈ V , 𝑗 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑗m 𝑖 ) ↦ ( 𝑙𝑗 ↦ { 𝑚𝑖𝑙 ∈ ( 𝑘𝑚 ) } ) ) )
2 neicvg.p 𝑃 = ( 𝑛 ∈ V ↦ ( 𝑝 ∈ ( 𝒫 𝑛m 𝒫 𝑛 ) ↦ ( 𝑜 ∈ 𝒫 𝑛 ↦ ( 𝑛 ∖ ( 𝑝 ‘ ( 𝑛𝑜 ) ) ) ) ) )
3 neicvg.d 𝐷 = ( 𝑃𝐵 )
4 neicvg.f 𝐹 = ( 𝒫 𝐵 𝑂 𝐵 )
5 neicvg.g 𝐺 = ( 𝐵 𝑂 𝒫 𝐵 )
6 neicvg.h 𝐻 = ( 𝐹 ∘ ( 𝐷𝐺 ) )
7 neicvg.r ( 𝜑𝑁 𝐻 𝑀 )
8 1 2 3 4 5 6 7 neicvgnvo ( 𝜑 𝐻 = 𝐻 )
9 8 breqd ( 𝜑 → ( 𝑁 𝐻 𝑀𝑁 𝐻 𝑀 ) )
10 7 9 mpbird ( 𝜑𝑁 𝐻 𝑀 )
11 relco Rel ( 𝐹 ∘ ( 𝐷𝐺 ) )
12 6 releqi ( Rel 𝐻 ↔ Rel ( 𝐹 ∘ ( 𝐷𝐺 ) ) )
13 11 12 mpbir Rel 𝐻
14 13 relbrcnv ( 𝑁 𝐻 𝑀𝑀 𝐻 𝑁 )
15 10 14 sylib ( 𝜑𝑀 𝐻 𝑁 )