Metamath Proof Explorer


Theorem neicvgmex

Description: If the neighborhoods and convergents functions are related, the convergents function exists. (Contributed by RP, 27-Jun-2021)

Ref Expression
Hypotheses neicvg.o 𝑂 = ( 𝑖 ∈ V , 𝑗 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑗m 𝑖 ) ↦ ( 𝑙𝑗 ↦ { 𝑚𝑖𝑙 ∈ ( 𝑘𝑚 ) } ) ) )
neicvg.p 𝑃 = ( 𝑛 ∈ V ↦ ( 𝑝 ∈ ( 𝒫 𝑛m 𝒫 𝑛 ) ↦ ( 𝑜 ∈ 𝒫 𝑛 ↦ ( 𝑛 ∖ ( 𝑝 ‘ ( 𝑛𝑜 ) ) ) ) ) )
neicvg.d 𝐷 = ( 𝑃𝐵 )
neicvg.f 𝐹 = ( 𝒫 𝐵 𝑂 𝐵 )
neicvg.g 𝐺 = ( 𝐵 𝑂 𝒫 𝐵 )
neicvg.h 𝐻 = ( 𝐹 ∘ ( 𝐷𝐺 ) )
neicvg.r ( 𝜑𝑁 𝐻 𝑀 )
Assertion neicvgmex ( 𝜑𝑀 ∈ ( 𝒫 𝒫 𝐵m 𝐵 ) )

Proof

Step Hyp Ref Expression
1 neicvg.o 𝑂 = ( 𝑖 ∈ V , 𝑗 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑗m 𝑖 ) ↦ ( 𝑙𝑗 ↦ { 𝑚𝑖𝑙 ∈ ( 𝑘𝑚 ) } ) ) )
2 neicvg.p 𝑃 = ( 𝑛 ∈ V ↦ ( 𝑝 ∈ ( 𝒫 𝑛m 𝒫 𝑛 ) ↦ ( 𝑜 ∈ 𝒫 𝑛 ↦ ( 𝑛 ∖ ( 𝑝 ‘ ( 𝑛𝑜 ) ) ) ) ) )
3 neicvg.d 𝐷 = ( 𝑃𝐵 )
4 neicvg.f 𝐹 = ( 𝒫 𝐵 𝑂 𝐵 )
5 neicvg.g 𝐺 = ( 𝐵 𝑂 𝒫 𝐵 )
6 neicvg.h 𝐻 = ( 𝐹 ∘ ( 𝐷𝐺 ) )
7 neicvg.r ( 𝜑𝑁 𝐻 𝑀 )
8 3 6 7 neicvgbex ( 𝜑𝐵 ∈ V )
9 pwexg ( 𝐵 ∈ V → 𝒫 𝐵 ∈ V )
10 9 adantl ( ( 𝜑𝐵 ∈ V ) → 𝒫 𝐵 ∈ V )
11 simpr ( ( 𝜑𝐵 ∈ V ) → 𝐵 ∈ V )
12 1 10 11 4 fsovf1od ( ( 𝜑𝐵 ∈ V ) → 𝐹 : ( 𝒫 𝐵m 𝒫 𝐵 ) –1-1-onto→ ( 𝒫 𝒫 𝐵m 𝐵 ) )
13 f1ofn ( 𝐹 : ( 𝒫 𝐵m 𝒫 𝐵 ) –1-1-onto→ ( 𝒫 𝒫 𝐵m 𝐵 ) → 𝐹 Fn ( 𝒫 𝐵m 𝒫 𝐵 ) )
14 12 13 syl ( ( 𝜑𝐵 ∈ V ) → 𝐹 Fn ( 𝒫 𝐵m 𝒫 𝐵 ) )
15 2 3 11 dssmapf1od ( ( 𝜑𝐵 ∈ V ) → 𝐷 : ( 𝒫 𝐵m 𝒫 𝐵 ) –1-1-onto→ ( 𝒫 𝐵m 𝒫 𝐵 ) )
16 f1of ( 𝐷 : ( 𝒫 𝐵m 𝒫 𝐵 ) –1-1-onto→ ( 𝒫 𝐵m 𝒫 𝐵 ) → 𝐷 : ( 𝒫 𝐵m 𝒫 𝐵 ) ⟶ ( 𝒫 𝐵m 𝒫 𝐵 ) )
17 15 16 syl ( ( 𝜑𝐵 ∈ V ) → 𝐷 : ( 𝒫 𝐵m 𝒫 𝐵 ) ⟶ ( 𝒫 𝐵m 𝒫 𝐵 ) )
18 1 11 10 5 fsovfd ( ( 𝜑𝐵 ∈ V ) → 𝐺 : ( 𝒫 𝒫 𝐵m 𝐵 ) ⟶ ( 𝒫 𝐵m 𝒫 𝐵 ) )
19 6 breqi ( 𝑁 𝐻 𝑀𝑁 ( 𝐹 ∘ ( 𝐷𝐺 ) ) 𝑀 )
20 7 19 sylib ( 𝜑𝑁 ( 𝐹 ∘ ( 𝐷𝐺 ) ) 𝑀 )
21 20 adantr ( ( 𝜑𝐵 ∈ V ) → 𝑁 ( 𝐹 ∘ ( 𝐷𝐺 ) ) 𝑀 )
22 14 17 18 21 brcofffn ( ( 𝜑𝐵 ∈ V ) → ( 𝑁 𝐺 ( 𝐺𝑁 ) ∧ ( 𝐺𝑁 ) 𝐷 ( 𝐷 ‘ ( 𝐺𝑁 ) ) ∧ ( 𝐷 ‘ ( 𝐺𝑁 ) ) 𝐹 𝑀 ) )
23 8 22 mpdan ( 𝜑 → ( 𝑁 𝐺 ( 𝐺𝑁 ) ∧ ( 𝐺𝑁 ) 𝐷 ( 𝐷 ‘ ( 𝐺𝑁 ) ) ∧ ( 𝐷 ‘ ( 𝐺𝑁 ) ) 𝐹 𝑀 ) )
24 23 simp3d ( 𝜑 → ( 𝐷 ‘ ( 𝐺𝑁 ) ) 𝐹 𝑀 )
25 1 4 24 ntrneinex ( 𝜑𝑀 ∈ ( 𝒫 𝒫 𝐵m 𝐵 ) )