Step |
Hyp |
Ref |
Expression |
1 |
|
neicvg.o |
⊢ 𝑂 = ( 𝑖 ∈ V , 𝑗 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑗 ↑m 𝑖 ) ↦ ( 𝑙 ∈ 𝑗 ↦ { 𝑚 ∈ 𝑖 ∣ 𝑙 ∈ ( 𝑘 ‘ 𝑚 ) } ) ) ) |
2 |
|
neicvg.p |
⊢ 𝑃 = ( 𝑛 ∈ V ↦ ( 𝑝 ∈ ( 𝒫 𝑛 ↑m 𝒫 𝑛 ) ↦ ( 𝑜 ∈ 𝒫 𝑛 ↦ ( 𝑛 ∖ ( 𝑝 ‘ ( 𝑛 ∖ 𝑜 ) ) ) ) ) ) |
3 |
|
neicvg.d |
⊢ 𝐷 = ( 𝑃 ‘ 𝐵 ) |
4 |
|
neicvg.f |
⊢ 𝐹 = ( 𝒫 𝐵 𝑂 𝐵 ) |
5 |
|
neicvg.g |
⊢ 𝐺 = ( 𝐵 𝑂 𝒫 𝐵 ) |
6 |
|
neicvg.h |
⊢ 𝐻 = ( 𝐹 ∘ ( 𝐷 ∘ 𝐺 ) ) |
7 |
|
neicvg.r |
⊢ ( 𝜑 → 𝑁 𝐻 𝑀 ) |
8 |
3 6 7
|
neicvgbex |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
9 |
|
pwexg |
⊢ ( 𝐵 ∈ V → 𝒫 𝐵 ∈ V ) |
10 |
9
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ V ) → 𝒫 𝐵 ∈ V ) |
11 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ V ) → 𝐵 ∈ V ) |
12 |
1 10 11 4
|
fsovf1od |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ V ) → 𝐹 : ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) –1-1-onto→ ( 𝒫 𝒫 𝐵 ↑m 𝐵 ) ) |
13 |
|
f1ofn |
⊢ ( 𝐹 : ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) –1-1-onto→ ( 𝒫 𝒫 𝐵 ↑m 𝐵 ) → 𝐹 Fn ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) |
14 |
12 13
|
syl |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ V ) → 𝐹 Fn ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) |
15 |
2 3 11
|
dssmapf1od |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ V ) → 𝐷 : ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) –1-1-onto→ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) |
16 |
|
f1of |
⊢ ( 𝐷 : ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) –1-1-onto→ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) → 𝐷 : ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ⟶ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) |
17 |
15 16
|
syl |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ V ) → 𝐷 : ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ⟶ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) |
18 |
1 11 10 5
|
fsovfd |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ V ) → 𝐺 : ( 𝒫 𝒫 𝐵 ↑m 𝐵 ) ⟶ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) |
19 |
6
|
breqi |
⊢ ( 𝑁 𝐻 𝑀 ↔ 𝑁 ( 𝐹 ∘ ( 𝐷 ∘ 𝐺 ) ) 𝑀 ) |
20 |
7 19
|
sylib |
⊢ ( 𝜑 → 𝑁 ( 𝐹 ∘ ( 𝐷 ∘ 𝐺 ) ) 𝑀 ) |
21 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ V ) → 𝑁 ( 𝐹 ∘ ( 𝐷 ∘ 𝐺 ) ) 𝑀 ) |
22 |
14 17 18 21
|
brcofffn |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ V ) → ( 𝑁 𝐺 ( 𝐺 ‘ 𝑁 ) ∧ ( 𝐺 ‘ 𝑁 ) 𝐷 ( 𝐷 ‘ ( 𝐺 ‘ 𝑁 ) ) ∧ ( 𝐷 ‘ ( 𝐺 ‘ 𝑁 ) ) 𝐹 𝑀 ) ) |
23 |
8 22
|
mpdan |
⊢ ( 𝜑 → ( 𝑁 𝐺 ( 𝐺 ‘ 𝑁 ) ∧ ( 𝐺 ‘ 𝑁 ) 𝐷 ( 𝐷 ‘ ( 𝐺 ‘ 𝑁 ) ) ∧ ( 𝐷 ‘ ( 𝐺 ‘ 𝑁 ) ) 𝐹 𝑀 ) ) |
24 |
23
|
simp3d |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝐺 ‘ 𝑁 ) ) 𝐹 𝑀 ) |
25 |
1 4 24
|
ntrneinex |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝒫 𝒫 𝐵 ↑m 𝐵 ) ) |