Metamath Proof Explorer


Theorem neicvgmex

Description: If the neighborhoods and convergents functions are related, the convergents function exists. (Contributed by RP, 27-Jun-2021)

Ref Expression
Hypotheses neicvg.o O = i V , j V k 𝒫 j i l j m i | l k m
neicvg.p P = n V p 𝒫 n 𝒫 n o 𝒫 n n p n o
neicvg.d D = P B
neicvg.f F = 𝒫 B O B
neicvg.g G = B O 𝒫 B
neicvg.h H = F D G
neicvg.r φ N H M
Assertion neicvgmex φ M 𝒫 𝒫 B B

Proof

Step Hyp Ref Expression
1 neicvg.o O = i V , j V k 𝒫 j i l j m i | l k m
2 neicvg.p P = n V p 𝒫 n 𝒫 n o 𝒫 n n p n o
3 neicvg.d D = P B
4 neicvg.f F = 𝒫 B O B
5 neicvg.g G = B O 𝒫 B
6 neicvg.h H = F D G
7 neicvg.r φ N H M
8 3 6 7 neicvgbex φ B V
9 pwexg B V 𝒫 B V
10 9 adantl φ B V 𝒫 B V
11 simpr φ B V B V
12 1 10 11 4 fsovf1od φ B V F : 𝒫 B 𝒫 B 1-1 onto 𝒫 𝒫 B B
13 f1ofn F : 𝒫 B 𝒫 B 1-1 onto 𝒫 𝒫 B B F Fn 𝒫 B 𝒫 B
14 12 13 syl φ B V F Fn 𝒫 B 𝒫 B
15 2 3 11 dssmapf1od φ B V D : 𝒫 B 𝒫 B 1-1 onto 𝒫 B 𝒫 B
16 f1of D : 𝒫 B 𝒫 B 1-1 onto 𝒫 B 𝒫 B D : 𝒫 B 𝒫 B 𝒫 B 𝒫 B
17 15 16 syl φ B V D : 𝒫 B 𝒫 B 𝒫 B 𝒫 B
18 1 11 10 5 fsovfd φ B V G : 𝒫 𝒫 B B 𝒫 B 𝒫 B
19 6 breqi N H M N F D G M
20 7 19 sylib φ N F D G M
21 20 adantr φ B V N F D G M
22 14 17 18 21 brcofffn φ B V N G G N G N D D G N D G N F M
23 8 22 mpdan φ N G G N G N D D G N D G N F M
24 23 simp3d φ D G N F M
25 1 4 24 ntrneinex φ M 𝒫 𝒫 B B