Metamath Proof Explorer


Theorem brcofffn

Description: Conditions allowing the decomposition of a binary relation. (Contributed by RP, 8-Jun-2021)

Ref Expression
Hypotheses brcofffn.c φ C Fn Z
brcofffn.d φ D : Y Z
brcofffn.e φ E : X Y
brcofffn.r φ A C D E B
Assertion brcofffn φ A E E A E A D D E A D E A C B

Proof

Step Hyp Ref Expression
1 brcofffn.c φ C Fn Z
2 brcofffn.d φ D : Y Z
3 brcofffn.e φ E : X Y
4 brcofffn.r φ A C D E B
5 fnfco C Fn Z D : Y Z C D Fn Y
6 1 2 5 syl2anc φ C D Fn Y
7 coass C D E = C D E
8 7 breqi A C D E B A C D E B
9 4 8 sylibr φ A C D E B
10 6 3 9 brcoffn φ A E E A E A C D B
11 1 adantr φ A E E A E A C D B C Fn Z
12 2 adantr φ A E E A E A C D B D : Y Z
13 simprr φ A E E A E A C D B E A C D B
14 11 12 13 brcoffn φ A E E A E A C D B E A D D E A D E A C B
15 14 ex φ A E E A E A C D B E A D D E A D E A C B
16 10 15 jcai φ A E E A E A C D B E A D D E A D E A C B
17 simpll A E E A E A C D B E A D D E A D E A C B A E E A
18 simprl A E E A E A C D B E A D D E A D E A C B E A D D E A
19 simprr A E E A E A C D B E A D D E A D E A C B D E A C B
20 17 18 19 3jca A E E A E A C D B E A D D E A D E A C B A E E A E A D D E A D E A C B
21 16 20 syl φ A E E A E A D D E A D E A C B