Metamath Proof Explorer


Theorem brcofffn

Description: Conditions allowing the decomposition of a binary relation. (Contributed by RP, 8-Jun-2021)

Ref Expression
Hypotheses brcofffn.c φCFnZ
brcofffn.d φD:YZ
brcofffn.e φE:XY
brcofffn.r φACDEB
Assertion brcofffn φAEEAEADDEADEACB

Proof

Step Hyp Ref Expression
1 brcofffn.c φCFnZ
2 brcofffn.d φD:YZ
3 brcofffn.e φE:XY
4 brcofffn.r φACDEB
5 fnfco CFnZD:YZCDFnY
6 1 2 5 syl2anc φCDFnY
7 coass CDE=CDE
8 7 breqi ACDEBACDEB
9 4 8 sylibr φACDEB
10 6 3 9 brcoffn φAEEAEACDB
11 1 adantr φAEEAEACDBCFnZ
12 2 adantr φAEEAEACDBD:YZ
13 simprr φAEEAEACDBEACDB
14 11 12 13 brcoffn φAEEAEACDBEADDEADEACB
15 14 ex φAEEAEACDBEADDEADEACB
16 10 15 jcai φAEEAEACDBEADDEADEACB
17 simpll AEEAEACDBEADDEADEACBAEEA
18 simprl AEEAEACDBEADDEADEACBEADDEA
19 simprr AEEAEACDBEADDEADEACBDEACB
20 17 18 19 3jca AEEAEACDBEADDEADEACBAEEAEADDEADEACB
21 16 20 syl φAEEAEADDEADEACB