Metamath Proof Explorer


Theorem brcoffn

Description: Conditions allowing the decomposition of a binary relation. (Contributed by RP, 7-Jun-2021)

Ref Expression
Hypotheses brcoffn.c φCFnY
brcoffn.d φD:XY
brcoffn.r φACDB
Assertion brcoffn φADDADACB

Proof

Step Hyp Ref Expression
1 brcoffn.c φCFnY
2 brcoffn.d φD:XY
3 brcoffn.r φACDB
4 fnfco CFnYD:XYCDFnX
5 1 2 4 syl2anc φCDFnX
6 simpl φCDFnXφ
7 simpr φCDFnXCDFnX
8 6 3 syl φCDFnXACDB
9 fnbr CDFnXACDBAX
10 7 8 9 syl2anc φCDFnXAX
11 6 7 10 3jca φCDFnXφCDFnXAX
12 5 11 mpdan φφCDFnXAX
13 2 3ad2ant1 φCDFnXAXD:XY
14 simp3 φCDFnXAXAX
15 fvco3 D:XYAXCDA=CDA
16 13 14 15 syl2anc φCDFnXAXCDA=CDA
17 3 3ad2ant1 φCDFnXAXACDB
18 fnbrfvb CDFnXAXCDA=BACDB
19 18 3adant1 φCDFnXAXCDA=BACDB
20 17 19 mpbird φCDFnXAXCDA=B
21 16 20 eqtr3d φCDFnXAXCDA=B
22 eqid DA=DA
23 21 22 jctil φCDFnXAXDA=DACDA=B
24 13 ffnd φCDFnXAXDFnX
25 fnbrfvb DFnXAXDA=DAADDA
26 24 14 25 syl2anc φCDFnXAXDA=DAADDA
27 1 3ad2ant1 φCDFnXAXCFnY
28 13 14 ffvelcdmd φCDFnXAXDAY
29 fnbrfvb CFnYDAYCDA=BDACB
30 27 28 29 syl2anc φCDFnXAXCDA=BDACB
31 26 30 anbi12d φCDFnXAXDA=DACDA=BADDADACB
32 23 31 mpbid φCDFnXAXADDADACB
33 12 32 syl φADDADACB