Metamath Proof Explorer


Theorem brcoffn

Description: Conditions allowing the decomposition of a binary relation. (Contributed by RP, 7-Jun-2021)

Ref Expression
Hypotheses brcoffn.c φ C Fn Y
brcoffn.d φ D : X Y
brcoffn.r φ A C D B
Assertion brcoffn φ A D D A D A C B

Proof

Step Hyp Ref Expression
1 brcoffn.c φ C Fn Y
2 brcoffn.d φ D : X Y
3 brcoffn.r φ A C D B
4 fnfco C Fn Y D : X Y C D Fn X
5 1 2 4 syl2anc φ C D Fn X
6 simpl φ C D Fn X φ
7 simpr φ C D Fn X C D Fn X
8 6 3 syl φ C D Fn X A C D B
9 fnbr C D Fn X A C D B A X
10 7 8 9 syl2anc φ C D Fn X A X
11 6 7 10 3jca φ C D Fn X φ C D Fn X A X
12 5 11 mpdan φ φ C D Fn X A X
13 2 3ad2ant1 φ C D Fn X A X D : X Y
14 simp3 φ C D Fn X A X A X
15 fvco3 D : X Y A X C D A = C D A
16 13 14 15 syl2anc φ C D Fn X A X C D A = C D A
17 3 3ad2ant1 φ C D Fn X A X A C D B
18 fnbrfvb C D Fn X A X C D A = B A C D B
19 18 3adant1 φ C D Fn X A X C D A = B A C D B
20 17 19 mpbird φ C D Fn X A X C D A = B
21 16 20 eqtr3d φ C D Fn X A X C D A = B
22 eqid D A = D A
23 21 22 jctil φ C D Fn X A X D A = D A C D A = B
24 13 ffnd φ C D Fn X A X D Fn X
25 fnbrfvb D Fn X A X D A = D A A D D A
26 24 14 25 syl2anc φ C D Fn X A X D A = D A A D D A
27 1 3ad2ant1 φ C D Fn X A X C Fn Y
28 13 14 ffvelrnd φ C D Fn X A X D A Y
29 fnbrfvb C Fn Y D A Y C D A = B D A C B
30 27 28 29 syl2anc φ C D Fn X A X C D A = B D A C B
31 26 30 anbi12d φ C D Fn X A X D A = D A C D A = B A D D A D A C B
32 23 31 mpbid φ C D Fn X A X A D D A D A C B
33 12 32 syl φ A D D A D A C B