Step |
Hyp |
Ref |
Expression |
1 |
|
brcofffn.c |
|- ( ph -> C Fn Z ) |
2 |
|
brcofffn.d |
|- ( ph -> D : Y --> Z ) |
3 |
|
brcofffn.e |
|- ( ph -> E : X --> Y ) |
4 |
|
brcofffn.r |
|- ( ph -> A ( C o. ( D o. E ) ) B ) |
5 |
|
fnfco |
|- ( ( C Fn Z /\ D : Y --> Z ) -> ( C o. D ) Fn Y ) |
6 |
1 2 5
|
syl2anc |
|- ( ph -> ( C o. D ) Fn Y ) |
7 |
|
coass |
|- ( ( C o. D ) o. E ) = ( C o. ( D o. E ) ) |
8 |
7
|
breqi |
|- ( A ( ( C o. D ) o. E ) B <-> A ( C o. ( D o. E ) ) B ) |
9 |
4 8
|
sylibr |
|- ( ph -> A ( ( C o. D ) o. E ) B ) |
10 |
6 3 9
|
brcoffn |
|- ( ph -> ( A E ( E ` A ) /\ ( E ` A ) ( C o. D ) B ) ) |
11 |
1
|
adantr |
|- ( ( ph /\ ( A E ( E ` A ) /\ ( E ` A ) ( C o. D ) B ) ) -> C Fn Z ) |
12 |
2
|
adantr |
|- ( ( ph /\ ( A E ( E ` A ) /\ ( E ` A ) ( C o. D ) B ) ) -> D : Y --> Z ) |
13 |
|
simprr |
|- ( ( ph /\ ( A E ( E ` A ) /\ ( E ` A ) ( C o. D ) B ) ) -> ( E ` A ) ( C o. D ) B ) |
14 |
11 12 13
|
brcoffn |
|- ( ( ph /\ ( A E ( E ` A ) /\ ( E ` A ) ( C o. D ) B ) ) -> ( ( E ` A ) D ( D ` ( E ` A ) ) /\ ( D ` ( E ` A ) ) C B ) ) |
15 |
14
|
ex |
|- ( ph -> ( ( A E ( E ` A ) /\ ( E ` A ) ( C o. D ) B ) -> ( ( E ` A ) D ( D ` ( E ` A ) ) /\ ( D ` ( E ` A ) ) C B ) ) ) |
16 |
10 15
|
jcai |
|- ( ph -> ( ( A E ( E ` A ) /\ ( E ` A ) ( C o. D ) B ) /\ ( ( E ` A ) D ( D ` ( E ` A ) ) /\ ( D ` ( E ` A ) ) C B ) ) ) |
17 |
|
simpll |
|- ( ( ( A E ( E ` A ) /\ ( E ` A ) ( C o. D ) B ) /\ ( ( E ` A ) D ( D ` ( E ` A ) ) /\ ( D ` ( E ` A ) ) C B ) ) -> A E ( E ` A ) ) |
18 |
|
simprl |
|- ( ( ( A E ( E ` A ) /\ ( E ` A ) ( C o. D ) B ) /\ ( ( E ` A ) D ( D ` ( E ` A ) ) /\ ( D ` ( E ` A ) ) C B ) ) -> ( E ` A ) D ( D ` ( E ` A ) ) ) |
19 |
|
simprr |
|- ( ( ( A E ( E ` A ) /\ ( E ` A ) ( C o. D ) B ) /\ ( ( E ` A ) D ( D ` ( E ` A ) ) /\ ( D ` ( E ` A ) ) C B ) ) -> ( D ` ( E ` A ) ) C B ) |
20 |
17 18 19
|
3jca |
|- ( ( ( A E ( E ` A ) /\ ( E ` A ) ( C o. D ) B ) /\ ( ( E ` A ) D ( D ` ( E ` A ) ) /\ ( D ` ( E ` A ) ) C B ) ) -> ( A E ( E ` A ) /\ ( E ` A ) D ( D ` ( E ` A ) ) /\ ( D ` ( E ` A ) ) C B ) ) |
21 |
16 20
|
syl |
|- ( ph -> ( A E ( E ` A ) /\ ( E ` A ) D ( D ` ( E ` A ) ) /\ ( D ` ( E ` A ) ) C B ) ) |