Step |
Hyp |
Ref |
Expression |
1 |
|
brco2f1o.c |
|- ( ph -> C : Y -1-1-onto-> Z ) |
2 |
|
brco2f1o.d |
|- ( ph -> D : X -1-1-onto-> Y ) |
3 |
|
brco2f1o.r |
|- ( ph -> A ( C o. D ) B ) |
4 |
|
f1ocnv |
|- ( D : X -1-1-onto-> Y -> `' D : Y -1-1-onto-> X ) |
5 |
|
f1ofn |
|- ( `' D : Y -1-1-onto-> X -> `' D Fn Y ) |
6 |
2 4 5
|
3syl |
|- ( ph -> `' D Fn Y ) |
7 |
|
f1ocnv |
|- ( C : Y -1-1-onto-> Z -> `' C : Z -1-1-onto-> Y ) |
8 |
|
f1of |
|- ( `' C : Z -1-1-onto-> Y -> `' C : Z --> Y ) |
9 |
1 7 8
|
3syl |
|- ( ph -> `' C : Z --> Y ) |
10 |
|
relco |
|- Rel ( C o. D ) |
11 |
10
|
relbrcnv |
|- ( B `' ( C o. D ) A <-> A ( C o. D ) B ) |
12 |
|
cnvco |
|- `' ( C o. D ) = ( `' D o. `' C ) |
13 |
12
|
breqi |
|- ( B `' ( C o. D ) A <-> B ( `' D o. `' C ) A ) |
14 |
11 13
|
bitr3i |
|- ( A ( C o. D ) B <-> B ( `' D o. `' C ) A ) |
15 |
3 14
|
sylib |
|- ( ph -> B ( `' D o. `' C ) A ) |
16 |
6 9 15
|
brcoffn |
|- ( ph -> ( B `' C ( `' C ` B ) /\ ( `' C ` B ) `' D A ) ) |
17 |
|
f1orel |
|- ( C : Y -1-1-onto-> Z -> Rel C ) |
18 |
|
relbrcnvg |
|- ( Rel C -> ( B `' C ( `' C ` B ) <-> ( `' C ` B ) C B ) ) |
19 |
1 17 18
|
3syl |
|- ( ph -> ( B `' C ( `' C ` B ) <-> ( `' C ` B ) C B ) ) |
20 |
|
f1orel |
|- ( D : X -1-1-onto-> Y -> Rel D ) |
21 |
|
relbrcnvg |
|- ( Rel D -> ( ( `' C ` B ) `' D A <-> A D ( `' C ` B ) ) ) |
22 |
2 20 21
|
3syl |
|- ( ph -> ( ( `' C ` B ) `' D A <-> A D ( `' C ` B ) ) ) |
23 |
19 22
|
anbi12d |
|- ( ph -> ( ( B `' C ( `' C ` B ) /\ ( `' C ` B ) `' D A ) <-> ( ( `' C ` B ) C B /\ A D ( `' C ` B ) ) ) ) |
24 |
16 23
|
mpbid |
|- ( ph -> ( ( `' C ` B ) C B /\ A D ( `' C ` B ) ) ) |