Step |
Hyp |
Ref |
Expression |
1 |
|
brco2f1o.c |
⊢ ( 𝜑 → 𝐶 : 𝑌 –1-1-onto→ 𝑍 ) |
2 |
|
brco2f1o.d |
⊢ ( 𝜑 → 𝐷 : 𝑋 –1-1-onto→ 𝑌 ) |
3 |
|
brco2f1o.r |
⊢ ( 𝜑 → 𝐴 ( 𝐶 ∘ 𝐷 ) 𝐵 ) |
4 |
|
f1ocnv |
⊢ ( 𝐷 : 𝑋 –1-1-onto→ 𝑌 → ◡ 𝐷 : 𝑌 –1-1-onto→ 𝑋 ) |
5 |
|
f1ofn |
⊢ ( ◡ 𝐷 : 𝑌 –1-1-onto→ 𝑋 → ◡ 𝐷 Fn 𝑌 ) |
6 |
2 4 5
|
3syl |
⊢ ( 𝜑 → ◡ 𝐷 Fn 𝑌 ) |
7 |
|
f1ocnv |
⊢ ( 𝐶 : 𝑌 –1-1-onto→ 𝑍 → ◡ 𝐶 : 𝑍 –1-1-onto→ 𝑌 ) |
8 |
|
f1of |
⊢ ( ◡ 𝐶 : 𝑍 –1-1-onto→ 𝑌 → ◡ 𝐶 : 𝑍 ⟶ 𝑌 ) |
9 |
1 7 8
|
3syl |
⊢ ( 𝜑 → ◡ 𝐶 : 𝑍 ⟶ 𝑌 ) |
10 |
|
relco |
⊢ Rel ( 𝐶 ∘ 𝐷 ) |
11 |
10
|
relbrcnv |
⊢ ( 𝐵 ◡ ( 𝐶 ∘ 𝐷 ) 𝐴 ↔ 𝐴 ( 𝐶 ∘ 𝐷 ) 𝐵 ) |
12 |
|
cnvco |
⊢ ◡ ( 𝐶 ∘ 𝐷 ) = ( ◡ 𝐷 ∘ ◡ 𝐶 ) |
13 |
12
|
breqi |
⊢ ( 𝐵 ◡ ( 𝐶 ∘ 𝐷 ) 𝐴 ↔ 𝐵 ( ◡ 𝐷 ∘ ◡ 𝐶 ) 𝐴 ) |
14 |
11 13
|
bitr3i |
⊢ ( 𝐴 ( 𝐶 ∘ 𝐷 ) 𝐵 ↔ 𝐵 ( ◡ 𝐷 ∘ ◡ 𝐶 ) 𝐴 ) |
15 |
3 14
|
sylib |
⊢ ( 𝜑 → 𝐵 ( ◡ 𝐷 ∘ ◡ 𝐶 ) 𝐴 ) |
16 |
6 9 15
|
brcoffn |
⊢ ( 𝜑 → ( 𝐵 ◡ 𝐶 ( ◡ 𝐶 ‘ 𝐵 ) ∧ ( ◡ 𝐶 ‘ 𝐵 ) ◡ 𝐷 𝐴 ) ) |
17 |
|
f1orel |
⊢ ( 𝐶 : 𝑌 –1-1-onto→ 𝑍 → Rel 𝐶 ) |
18 |
|
relbrcnvg |
⊢ ( Rel 𝐶 → ( 𝐵 ◡ 𝐶 ( ◡ 𝐶 ‘ 𝐵 ) ↔ ( ◡ 𝐶 ‘ 𝐵 ) 𝐶 𝐵 ) ) |
19 |
1 17 18
|
3syl |
⊢ ( 𝜑 → ( 𝐵 ◡ 𝐶 ( ◡ 𝐶 ‘ 𝐵 ) ↔ ( ◡ 𝐶 ‘ 𝐵 ) 𝐶 𝐵 ) ) |
20 |
|
f1orel |
⊢ ( 𝐷 : 𝑋 –1-1-onto→ 𝑌 → Rel 𝐷 ) |
21 |
|
relbrcnvg |
⊢ ( Rel 𝐷 → ( ( ◡ 𝐶 ‘ 𝐵 ) ◡ 𝐷 𝐴 ↔ 𝐴 𝐷 ( ◡ 𝐶 ‘ 𝐵 ) ) ) |
22 |
2 20 21
|
3syl |
⊢ ( 𝜑 → ( ( ◡ 𝐶 ‘ 𝐵 ) ◡ 𝐷 𝐴 ↔ 𝐴 𝐷 ( ◡ 𝐶 ‘ 𝐵 ) ) ) |
23 |
19 22
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝐵 ◡ 𝐶 ( ◡ 𝐶 ‘ 𝐵 ) ∧ ( ◡ 𝐶 ‘ 𝐵 ) ◡ 𝐷 𝐴 ) ↔ ( ( ◡ 𝐶 ‘ 𝐵 ) 𝐶 𝐵 ∧ 𝐴 𝐷 ( ◡ 𝐶 ‘ 𝐵 ) ) ) ) |
24 |
16 23
|
mpbid |
⊢ ( 𝜑 → ( ( ◡ 𝐶 ‘ 𝐵 ) 𝐶 𝐵 ∧ 𝐴 𝐷 ( ◡ 𝐶 ‘ 𝐵 ) ) ) |