Metamath Proof Explorer


Theorem brco2f1o

Description: Conditions allowing the decomposition of a binary relation. (Contributed by RP, 8-Jun-2021)

Ref Expression
Hypotheses brco2f1o.c φ C : Y 1-1 onto Z
brco2f1o.d φ D : X 1-1 onto Y
brco2f1o.r φ A C D B
Assertion brco2f1o φ C -1 B C B A D C -1 B

Proof

Step Hyp Ref Expression
1 brco2f1o.c φ C : Y 1-1 onto Z
2 brco2f1o.d φ D : X 1-1 onto Y
3 brco2f1o.r φ A C D B
4 f1ocnv D : X 1-1 onto Y D -1 : Y 1-1 onto X
5 f1ofn D -1 : Y 1-1 onto X D -1 Fn Y
6 2 4 5 3syl φ D -1 Fn Y
7 f1ocnv C : Y 1-1 onto Z C -1 : Z 1-1 onto Y
8 f1of C -1 : Z 1-1 onto Y C -1 : Z Y
9 1 7 8 3syl φ C -1 : Z Y
10 relco Rel C D
11 10 relbrcnv B C D -1 A A C D B
12 cnvco C D -1 = D -1 C -1
13 12 breqi B C D -1 A B D -1 C -1 A
14 11 13 bitr3i A C D B B D -1 C -1 A
15 3 14 sylib φ B D -1 C -1 A
16 6 9 15 brcoffn φ B C -1 C -1 B C -1 B D -1 A
17 f1orel C : Y 1-1 onto Z Rel C
18 relbrcnvg Rel C B C -1 C -1 B C -1 B C B
19 1 17 18 3syl φ B C -1 C -1 B C -1 B C B
20 f1orel D : X 1-1 onto Y Rel D
21 relbrcnvg Rel D C -1 B D -1 A A D C -1 B
22 2 20 21 3syl φ C -1 B D -1 A A D C -1 B
23 19 22 anbi12d φ B C -1 C -1 B C -1 B D -1 A C -1 B C B A D C -1 B
24 16 23 mpbid φ C -1 B C B A D C -1 B