Step |
Hyp |
Ref |
Expression |
1 |
|
brco3f1o.c |
⊢ ( 𝜑 → 𝐶 : 𝑌 –1-1-onto→ 𝑍 ) |
2 |
|
brco3f1o.d |
⊢ ( 𝜑 → 𝐷 : 𝑋 –1-1-onto→ 𝑌 ) |
3 |
|
brco3f1o.e |
⊢ ( 𝜑 → 𝐸 : 𝑊 –1-1-onto→ 𝑋 ) |
4 |
|
brco3f1o.r |
⊢ ( 𝜑 → 𝐴 ( 𝐶 ∘ ( 𝐷 ∘ 𝐸 ) ) 𝐵 ) |
5 |
|
f1ocnv |
⊢ ( 𝐸 : 𝑊 –1-1-onto→ 𝑋 → ◡ 𝐸 : 𝑋 –1-1-onto→ 𝑊 ) |
6 |
|
f1ofn |
⊢ ( ◡ 𝐸 : 𝑋 –1-1-onto→ 𝑊 → ◡ 𝐸 Fn 𝑋 ) |
7 |
3 5 6
|
3syl |
⊢ ( 𝜑 → ◡ 𝐸 Fn 𝑋 ) |
8 |
|
f1ocnv |
⊢ ( 𝐷 : 𝑋 –1-1-onto→ 𝑌 → ◡ 𝐷 : 𝑌 –1-1-onto→ 𝑋 ) |
9 |
|
f1of |
⊢ ( ◡ 𝐷 : 𝑌 –1-1-onto→ 𝑋 → ◡ 𝐷 : 𝑌 ⟶ 𝑋 ) |
10 |
2 8 9
|
3syl |
⊢ ( 𝜑 → ◡ 𝐷 : 𝑌 ⟶ 𝑋 ) |
11 |
|
f1ocnv |
⊢ ( 𝐶 : 𝑌 –1-1-onto→ 𝑍 → ◡ 𝐶 : 𝑍 –1-1-onto→ 𝑌 ) |
12 |
|
f1of |
⊢ ( ◡ 𝐶 : 𝑍 –1-1-onto→ 𝑌 → ◡ 𝐶 : 𝑍 ⟶ 𝑌 ) |
13 |
1 11 12
|
3syl |
⊢ ( 𝜑 → ◡ 𝐶 : 𝑍 ⟶ 𝑌 ) |
14 |
|
relco |
⊢ Rel ( ( 𝐶 ∘ 𝐷 ) ∘ 𝐸 ) |
15 |
14
|
relbrcnv |
⊢ ( 𝐵 ◡ ( ( 𝐶 ∘ 𝐷 ) ∘ 𝐸 ) 𝐴 ↔ 𝐴 ( ( 𝐶 ∘ 𝐷 ) ∘ 𝐸 ) 𝐵 ) |
16 |
|
cnvco |
⊢ ◡ ( ( 𝐶 ∘ 𝐷 ) ∘ 𝐸 ) = ( ◡ 𝐸 ∘ ◡ ( 𝐶 ∘ 𝐷 ) ) |
17 |
|
cnvco |
⊢ ◡ ( 𝐶 ∘ 𝐷 ) = ( ◡ 𝐷 ∘ ◡ 𝐶 ) |
18 |
17
|
coeq2i |
⊢ ( ◡ 𝐸 ∘ ◡ ( 𝐶 ∘ 𝐷 ) ) = ( ◡ 𝐸 ∘ ( ◡ 𝐷 ∘ ◡ 𝐶 ) ) |
19 |
16 18
|
eqtri |
⊢ ◡ ( ( 𝐶 ∘ 𝐷 ) ∘ 𝐸 ) = ( ◡ 𝐸 ∘ ( ◡ 𝐷 ∘ ◡ 𝐶 ) ) |
20 |
19
|
breqi |
⊢ ( 𝐵 ◡ ( ( 𝐶 ∘ 𝐷 ) ∘ 𝐸 ) 𝐴 ↔ 𝐵 ( ◡ 𝐸 ∘ ( ◡ 𝐷 ∘ ◡ 𝐶 ) ) 𝐴 ) |
21 |
|
coass |
⊢ ( ( 𝐶 ∘ 𝐷 ) ∘ 𝐸 ) = ( 𝐶 ∘ ( 𝐷 ∘ 𝐸 ) ) |
22 |
21
|
breqi |
⊢ ( 𝐴 ( ( 𝐶 ∘ 𝐷 ) ∘ 𝐸 ) 𝐵 ↔ 𝐴 ( 𝐶 ∘ ( 𝐷 ∘ 𝐸 ) ) 𝐵 ) |
23 |
15 20 22
|
3bitr3ri |
⊢ ( 𝐴 ( 𝐶 ∘ ( 𝐷 ∘ 𝐸 ) ) 𝐵 ↔ 𝐵 ( ◡ 𝐸 ∘ ( ◡ 𝐷 ∘ ◡ 𝐶 ) ) 𝐴 ) |
24 |
4 23
|
sylib |
⊢ ( 𝜑 → 𝐵 ( ◡ 𝐸 ∘ ( ◡ 𝐷 ∘ ◡ 𝐶 ) ) 𝐴 ) |
25 |
7 10 13 24
|
brcofffn |
⊢ ( 𝜑 → ( 𝐵 ◡ 𝐶 ( ◡ 𝐶 ‘ 𝐵 ) ∧ ( ◡ 𝐶 ‘ 𝐵 ) ◡ 𝐷 ( ◡ 𝐷 ‘ ( ◡ 𝐶 ‘ 𝐵 ) ) ∧ ( ◡ 𝐷 ‘ ( ◡ 𝐶 ‘ 𝐵 ) ) ◡ 𝐸 𝐴 ) ) |
26 |
|
f1orel |
⊢ ( 𝐶 : 𝑌 –1-1-onto→ 𝑍 → Rel 𝐶 ) |
27 |
|
relbrcnvg |
⊢ ( Rel 𝐶 → ( 𝐵 ◡ 𝐶 ( ◡ 𝐶 ‘ 𝐵 ) ↔ ( ◡ 𝐶 ‘ 𝐵 ) 𝐶 𝐵 ) ) |
28 |
1 26 27
|
3syl |
⊢ ( 𝜑 → ( 𝐵 ◡ 𝐶 ( ◡ 𝐶 ‘ 𝐵 ) ↔ ( ◡ 𝐶 ‘ 𝐵 ) 𝐶 𝐵 ) ) |
29 |
|
f1orel |
⊢ ( 𝐷 : 𝑋 –1-1-onto→ 𝑌 → Rel 𝐷 ) |
30 |
|
relbrcnvg |
⊢ ( Rel 𝐷 → ( ( ◡ 𝐶 ‘ 𝐵 ) ◡ 𝐷 ( ◡ 𝐷 ‘ ( ◡ 𝐶 ‘ 𝐵 ) ) ↔ ( ◡ 𝐷 ‘ ( ◡ 𝐶 ‘ 𝐵 ) ) 𝐷 ( ◡ 𝐶 ‘ 𝐵 ) ) ) |
31 |
2 29 30
|
3syl |
⊢ ( 𝜑 → ( ( ◡ 𝐶 ‘ 𝐵 ) ◡ 𝐷 ( ◡ 𝐷 ‘ ( ◡ 𝐶 ‘ 𝐵 ) ) ↔ ( ◡ 𝐷 ‘ ( ◡ 𝐶 ‘ 𝐵 ) ) 𝐷 ( ◡ 𝐶 ‘ 𝐵 ) ) ) |
32 |
|
f1orel |
⊢ ( 𝐸 : 𝑊 –1-1-onto→ 𝑋 → Rel 𝐸 ) |
33 |
|
relbrcnvg |
⊢ ( Rel 𝐸 → ( ( ◡ 𝐷 ‘ ( ◡ 𝐶 ‘ 𝐵 ) ) ◡ 𝐸 𝐴 ↔ 𝐴 𝐸 ( ◡ 𝐷 ‘ ( ◡ 𝐶 ‘ 𝐵 ) ) ) ) |
34 |
3 32 33
|
3syl |
⊢ ( 𝜑 → ( ( ◡ 𝐷 ‘ ( ◡ 𝐶 ‘ 𝐵 ) ) ◡ 𝐸 𝐴 ↔ 𝐴 𝐸 ( ◡ 𝐷 ‘ ( ◡ 𝐶 ‘ 𝐵 ) ) ) ) |
35 |
28 31 34
|
3anbi123d |
⊢ ( 𝜑 → ( ( 𝐵 ◡ 𝐶 ( ◡ 𝐶 ‘ 𝐵 ) ∧ ( ◡ 𝐶 ‘ 𝐵 ) ◡ 𝐷 ( ◡ 𝐷 ‘ ( ◡ 𝐶 ‘ 𝐵 ) ) ∧ ( ◡ 𝐷 ‘ ( ◡ 𝐶 ‘ 𝐵 ) ) ◡ 𝐸 𝐴 ) ↔ ( ( ◡ 𝐶 ‘ 𝐵 ) 𝐶 𝐵 ∧ ( ◡ 𝐷 ‘ ( ◡ 𝐶 ‘ 𝐵 ) ) 𝐷 ( ◡ 𝐶 ‘ 𝐵 ) ∧ 𝐴 𝐸 ( ◡ 𝐷 ‘ ( ◡ 𝐶 ‘ 𝐵 ) ) ) ) ) |
36 |
25 35
|
mpbid |
⊢ ( 𝜑 → ( ( ◡ 𝐶 ‘ 𝐵 ) 𝐶 𝐵 ∧ ( ◡ 𝐷 ‘ ( ◡ 𝐶 ‘ 𝐵 ) ) 𝐷 ( ◡ 𝐶 ‘ 𝐵 ) ∧ 𝐴 𝐸 ( ◡ 𝐷 ‘ ( ◡ 𝐶 ‘ 𝐵 ) ) ) ) |