Step |
Hyp |
Ref |
Expression |
1 |
|
brco3f1o.c |
|- ( ph -> C : Y -1-1-onto-> Z ) |
2 |
|
brco3f1o.d |
|- ( ph -> D : X -1-1-onto-> Y ) |
3 |
|
brco3f1o.e |
|- ( ph -> E : W -1-1-onto-> X ) |
4 |
|
brco3f1o.r |
|- ( ph -> A ( C o. ( D o. E ) ) B ) |
5 |
|
f1ocnv |
|- ( E : W -1-1-onto-> X -> `' E : X -1-1-onto-> W ) |
6 |
|
f1ofn |
|- ( `' E : X -1-1-onto-> W -> `' E Fn X ) |
7 |
3 5 6
|
3syl |
|- ( ph -> `' E Fn X ) |
8 |
|
f1ocnv |
|- ( D : X -1-1-onto-> Y -> `' D : Y -1-1-onto-> X ) |
9 |
|
f1of |
|- ( `' D : Y -1-1-onto-> X -> `' D : Y --> X ) |
10 |
2 8 9
|
3syl |
|- ( ph -> `' D : Y --> X ) |
11 |
|
f1ocnv |
|- ( C : Y -1-1-onto-> Z -> `' C : Z -1-1-onto-> Y ) |
12 |
|
f1of |
|- ( `' C : Z -1-1-onto-> Y -> `' C : Z --> Y ) |
13 |
1 11 12
|
3syl |
|- ( ph -> `' C : Z --> Y ) |
14 |
|
relco |
|- Rel ( ( C o. D ) o. E ) |
15 |
14
|
relbrcnv |
|- ( B `' ( ( C o. D ) o. E ) A <-> A ( ( C o. D ) o. E ) B ) |
16 |
|
cnvco |
|- `' ( ( C o. D ) o. E ) = ( `' E o. `' ( C o. D ) ) |
17 |
|
cnvco |
|- `' ( C o. D ) = ( `' D o. `' C ) |
18 |
17
|
coeq2i |
|- ( `' E o. `' ( C o. D ) ) = ( `' E o. ( `' D o. `' C ) ) |
19 |
16 18
|
eqtri |
|- `' ( ( C o. D ) o. E ) = ( `' E o. ( `' D o. `' C ) ) |
20 |
19
|
breqi |
|- ( B `' ( ( C o. D ) o. E ) A <-> B ( `' E o. ( `' D o. `' C ) ) A ) |
21 |
|
coass |
|- ( ( C o. D ) o. E ) = ( C o. ( D o. E ) ) |
22 |
21
|
breqi |
|- ( A ( ( C o. D ) o. E ) B <-> A ( C o. ( D o. E ) ) B ) |
23 |
15 20 22
|
3bitr3ri |
|- ( A ( C o. ( D o. E ) ) B <-> B ( `' E o. ( `' D o. `' C ) ) A ) |
24 |
4 23
|
sylib |
|- ( ph -> B ( `' E o. ( `' D o. `' C ) ) A ) |
25 |
7 10 13 24
|
brcofffn |
|- ( ph -> ( B `' C ( `' C ` B ) /\ ( `' C ` B ) `' D ( `' D ` ( `' C ` B ) ) /\ ( `' D ` ( `' C ` B ) ) `' E A ) ) |
26 |
|
f1orel |
|- ( C : Y -1-1-onto-> Z -> Rel C ) |
27 |
|
relbrcnvg |
|- ( Rel C -> ( B `' C ( `' C ` B ) <-> ( `' C ` B ) C B ) ) |
28 |
1 26 27
|
3syl |
|- ( ph -> ( B `' C ( `' C ` B ) <-> ( `' C ` B ) C B ) ) |
29 |
|
f1orel |
|- ( D : X -1-1-onto-> Y -> Rel D ) |
30 |
|
relbrcnvg |
|- ( Rel D -> ( ( `' C ` B ) `' D ( `' D ` ( `' C ` B ) ) <-> ( `' D ` ( `' C ` B ) ) D ( `' C ` B ) ) ) |
31 |
2 29 30
|
3syl |
|- ( ph -> ( ( `' C ` B ) `' D ( `' D ` ( `' C ` B ) ) <-> ( `' D ` ( `' C ` B ) ) D ( `' C ` B ) ) ) |
32 |
|
f1orel |
|- ( E : W -1-1-onto-> X -> Rel E ) |
33 |
|
relbrcnvg |
|- ( Rel E -> ( ( `' D ` ( `' C ` B ) ) `' E A <-> A E ( `' D ` ( `' C ` B ) ) ) ) |
34 |
3 32 33
|
3syl |
|- ( ph -> ( ( `' D ` ( `' C ` B ) ) `' E A <-> A E ( `' D ` ( `' C ` B ) ) ) ) |
35 |
28 31 34
|
3anbi123d |
|- ( ph -> ( ( B `' C ( `' C ` B ) /\ ( `' C ` B ) `' D ( `' D ` ( `' C ` B ) ) /\ ( `' D ` ( `' C ` B ) ) `' E A ) <-> ( ( `' C ` B ) C B /\ ( `' D ` ( `' C ` B ) ) D ( `' C ` B ) /\ A E ( `' D ` ( `' C ` B ) ) ) ) ) |
36 |
25 35
|
mpbid |
|- ( ph -> ( ( `' C ` B ) C B /\ ( `' D ` ( `' C ` B ) ) D ( `' C ` B ) /\ A E ( `' D ` ( `' C ` B ) ) ) ) |