Metamath Proof Explorer


Theorem brcofffn

Description: Conditions allowing the decomposition of a binary relation. (Contributed by RP, 8-Jun-2021)

Ref Expression
Hypotheses brcofffn.c ( 𝜑𝐶 Fn 𝑍 )
brcofffn.d ( 𝜑𝐷 : 𝑌𝑍 )
brcofffn.e ( 𝜑𝐸 : 𝑋𝑌 )
brcofffn.r ( 𝜑𝐴 ( 𝐶 ∘ ( 𝐷𝐸 ) ) 𝐵 )
Assertion brcofffn ( 𝜑 → ( 𝐴 𝐸 ( 𝐸𝐴 ) ∧ ( 𝐸𝐴 ) 𝐷 ( 𝐷 ‘ ( 𝐸𝐴 ) ) ∧ ( 𝐷 ‘ ( 𝐸𝐴 ) ) 𝐶 𝐵 ) )

Proof

Step Hyp Ref Expression
1 brcofffn.c ( 𝜑𝐶 Fn 𝑍 )
2 brcofffn.d ( 𝜑𝐷 : 𝑌𝑍 )
3 brcofffn.e ( 𝜑𝐸 : 𝑋𝑌 )
4 brcofffn.r ( 𝜑𝐴 ( 𝐶 ∘ ( 𝐷𝐸 ) ) 𝐵 )
5 fnfco ( ( 𝐶 Fn 𝑍𝐷 : 𝑌𝑍 ) → ( 𝐶𝐷 ) Fn 𝑌 )
6 1 2 5 syl2anc ( 𝜑 → ( 𝐶𝐷 ) Fn 𝑌 )
7 coass ( ( 𝐶𝐷 ) ∘ 𝐸 ) = ( 𝐶 ∘ ( 𝐷𝐸 ) )
8 7 breqi ( 𝐴 ( ( 𝐶𝐷 ) ∘ 𝐸 ) 𝐵𝐴 ( 𝐶 ∘ ( 𝐷𝐸 ) ) 𝐵 )
9 4 8 sylibr ( 𝜑𝐴 ( ( 𝐶𝐷 ) ∘ 𝐸 ) 𝐵 )
10 6 3 9 brcoffn ( 𝜑 → ( 𝐴 𝐸 ( 𝐸𝐴 ) ∧ ( 𝐸𝐴 ) ( 𝐶𝐷 ) 𝐵 ) )
11 1 adantr ( ( 𝜑 ∧ ( 𝐴 𝐸 ( 𝐸𝐴 ) ∧ ( 𝐸𝐴 ) ( 𝐶𝐷 ) 𝐵 ) ) → 𝐶 Fn 𝑍 )
12 2 adantr ( ( 𝜑 ∧ ( 𝐴 𝐸 ( 𝐸𝐴 ) ∧ ( 𝐸𝐴 ) ( 𝐶𝐷 ) 𝐵 ) ) → 𝐷 : 𝑌𝑍 )
13 simprr ( ( 𝜑 ∧ ( 𝐴 𝐸 ( 𝐸𝐴 ) ∧ ( 𝐸𝐴 ) ( 𝐶𝐷 ) 𝐵 ) ) → ( 𝐸𝐴 ) ( 𝐶𝐷 ) 𝐵 )
14 11 12 13 brcoffn ( ( 𝜑 ∧ ( 𝐴 𝐸 ( 𝐸𝐴 ) ∧ ( 𝐸𝐴 ) ( 𝐶𝐷 ) 𝐵 ) ) → ( ( 𝐸𝐴 ) 𝐷 ( 𝐷 ‘ ( 𝐸𝐴 ) ) ∧ ( 𝐷 ‘ ( 𝐸𝐴 ) ) 𝐶 𝐵 ) )
15 14 ex ( 𝜑 → ( ( 𝐴 𝐸 ( 𝐸𝐴 ) ∧ ( 𝐸𝐴 ) ( 𝐶𝐷 ) 𝐵 ) → ( ( 𝐸𝐴 ) 𝐷 ( 𝐷 ‘ ( 𝐸𝐴 ) ) ∧ ( 𝐷 ‘ ( 𝐸𝐴 ) ) 𝐶 𝐵 ) ) )
16 10 15 jcai ( 𝜑 → ( ( 𝐴 𝐸 ( 𝐸𝐴 ) ∧ ( 𝐸𝐴 ) ( 𝐶𝐷 ) 𝐵 ) ∧ ( ( 𝐸𝐴 ) 𝐷 ( 𝐷 ‘ ( 𝐸𝐴 ) ) ∧ ( 𝐷 ‘ ( 𝐸𝐴 ) ) 𝐶 𝐵 ) ) )
17 simpll ( ( ( 𝐴 𝐸 ( 𝐸𝐴 ) ∧ ( 𝐸𝐴 ) ( 𝐶𝐷 ) 𝐵 ) ∧ ( ( 𝐸𝐴 ) 𝐷 ( 𝐷 ‘ ( 𝐸𝐴 ) ) ∧ ( 𝐷 ‘ ( 𝐸𝐴 ) ) 𝐶 𝐵 ) ) → 𝐴 𝐸 ( 𝐸𝐴 ) )
18 simprl ( ( ( 𝐴 𝐸 ( 𝐸𝐴 ) ∧ ( 𝐸𝐴 ) ( 𝐶𝐷 ) 𝐵 ) ∧ ( ( 𝐸𝐴 ) 𝐷 ( 𝐷 ‘ ( 𝐸𝐴 ) ) ∧ ( 𝐷 ‘ ( 𝐸𝐴 ) ) 𝐶 𝐵 ) ) → ( 𝐸𝐴 ) 𝐷 ( 𝐷 ‘ ( 𝐸𝐴 ) ) )
19 simprr ( ( ( 𝐴 𝐸 ( 𝐸𝐴 ) ∧ ( 𝐸𝐴 ) ( 𝐶𝐷 ) 𝐵 ) ∧ ( ( 𝐸𝐴 ) 𝐷 ( 𝐷 ‘ ( 𝐸𝐴 ) ) ∧ ( 𝐷 ‘ ( 𝐸𝐴 ) ) 𝐶 𝐵 ) ) → ( 𝐷 ‘ ( 𝐸𝐴 ) ) 𝐶 𝐵 )
20 17 18 19 3jca ( ( ( 𝐴 𝐸 ( 𝐸𝐴 ) ∧ ( 𝐸𝐴 ) ( 𝐶𝐷 ) 𝐵 ) ∧ ( ( 𝐸𝐴 ) 𝐷 ( 𝐷 ‘ ( 𝐸𝐴 ) ) ∧ ( 𝐷 ‘ ( 𝐸𝐴 ) ) 𝐶 𝐵 ) ) → ( 𝐴 𝐸 ( 𝐸𝐴 ) ∧ ( 𝐸𝐴 ) 𝐷 ( 𝐷 ‘ ( 𝐸𝐴 ) ) ∧ ( 𝐷 ‘ ( 𝐸𝐴 ) ) 𝐶 𝐵 ) )
21 16 20 syl ( 𝜑 → ( 𝐴 𝐸 ( 𝐸𝐴 ) ∧ ( 𝐸𝐴 ) 𝐷 ( 𝐷 ‘ ( 𝐸𝐴 ) ) ∧ ( 𝐷 ‘ ( 𝐸𝐴 ) ) 𝐶 𝐵 ) )