Step |
Hyp |
Ref |
Expression |
1 |
|
brcofffn.c |
⊢ ( 𝜑 → 𝐶 Fn 𝑍 ) |
2 |
|
brcofffn.d |
⊢ ( 𝜑 → 𝐷 : 𝑌 ⟶ 𝑍 ) |
3 |
|
brcofffn.e |
⊢ ( 𝜑 → 𝐸 : 𝑋 ⟶ 𝑌 ) |
4 |
|
brcofffn.r |
⊢ ( 𝜑 → 𝐴 ( 𝐶 ∘ ( 𝐷 ∘ 𝐸 ) ) 𝐵 ) |
5 |
|
fnfco |
⊢ ( ( 𝐶 Fn 𝑍 ∧ 𝐷 : 𝑌 ⟶ 𝑍 ) → ( 𝐶 ∘ 𝐷 ) Fn 𝑌 ) |
6 |
1 2 5
|
syl2anc |
⊢ ( 𝜑 → ( 𝐶 ∘ 𝐷 ) Fn 𝑌 ) |
7 |
|
coass |
⊢ ( ( 𝐶 ∘ 𝐷 ) ∘ 𝐸 ) = ( 𝐶 ∘ ( 𝐷 ∘ 𝐸 ) ) |
8 |
7
|
breqi |
⊢ ( 𝐴 ( ( 𝐶 ∘ 𝐷 ) ∘ 𝐸 ) 𝐵 ↔ 𝐴 ( 𝐶 ∘ ( 𝐷 ∘ 𝐸 ) ) 𝐵 ) |
9 |
4 8
|
sylibr |
⊢ ( 𝜑 → 𝐴 ( ( 𝐶 ∘ 𝐷 ) ∘ 𝐸 ) 𝐵 ) |
10 |
6 3 9
|
brcoffn |
⊢ ( 𝜑 → ( 𝐴 𝐸 ( 𝐸 ‘ 𝐴 ) ∧ ( 𝐸 ‘ 𝐴 ) ( 𝐶 ∘ 𝐷 ) 𝐵 ) ) |
11 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 𝐸 ( 𝐸 ‘ 𝐴 ) ∧ ( 𝐸 ‘ 𝐴 ) ( 𝐶 ∘ 𝐷 ) 𝐵 ) ) → 𝐶 Fn 𝑍 ) |
12 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 𝐸 ( 𝐸 ‘ 𝐴 ) ∧ ( 𝐸 ‘ 𝐴 ) ( 𝐶 ∘ 𝐷 ) 𝐵 ) ) → 𝐷 : 𝑌 ⟶ 𝑍 ) |
13 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝐴 𝐸 ( 𝐸 ‘ 𝐴 ) ∧ ( 𝐸 ‘ 𝐴 ) ( 𝐶 ∘ 𝐷 ) 𝐵 ) ) → ( 𝐸 ‘ 𝐴 ) ( 𝐶 ∘ 𝐷 ) 𝐵 ) |
14 |
11 12 13
|
brcoffn |
⊢ ( ( 𝜑 ∧ ( 𝐴 𝐸 ( 𝐸 ‘ 𝐴 ) ∧ ( 𝐸 ‘ 𝐴 ) ( 𝐶 ∘ 𝐷 ) 𝐵 ) ) → ( ( 𝐸 ‘ 𝐴 ) 𝐷 ( 𝐷 ‘ ( 𝐸 ‘ 𝐴 ) ) ∧ ( 𝐷 ‘ ( 𝐸 ‘ 𝐴 ) ) 𝐶 𝐵 ) ) |
15 |
14
|
ex |
⊢ ( 𝜑 → ( ( 𝐴 𝐸 ( 𝐸 ‘ 𝐴 ) ∧ ( 𝐸 ‘ 𝐴 ) ( 𝐶 ∘ 𝐷 ) 𝐵 ) → ( ( 𝐸 ‘ 𝐴 ) 𝐷 ( 𝐷 ‘ ( 𝐸 ‘ 𝐴 ) ) ∧ ( 𝐷 ‘ ( 𝐸 ‘ 𝐴 ) ) 𝐶 𝐵 ) ) ) |
16 |
10 15
|
jcai |
⊢ ( 𝜑 → ( ( 𝐴 𝐸 ( 𝐸 ‘ 𝐴 ) ∧ ( 𝐸 ‘ 𝐴 ) ( 𝐶 ∘ 𝐷 ) 𝐵 ) ∧ ( ( 𝐸 ‘ 𝐴 ) 𝐷 ( 𝐷 ‘ ( 𝐸 ‘ 𝐴 ) ) ∧ ( 𝐷 ‘ ( 𝐸 ‘ 𝐴 ) ) 𝐶 𝐵 ) ) ) |
17 |
|
simpll |
⊢ ( ( ( 𝐴 𝐸 ( 𝐸 ‘ 𝐴 ) ∧ ( 𝐸 ‘ 𝐴 ) ( 𝐶 ∘ 𝐷 ) 𝐵 ) ∧ ( ( 𝐸 ‘ 𝐴 ) 𝐷 ( 𝐷 ‘ ( 𝐸 ‘ 𝐴 ) ) ∧ ( 𝐷 ‘ ( 𝐸 ‘ 𝐴 ) ) 𝐶 𝐵 ) ) → 𝐴 𝐸 ( 𝐸 ‘ 𝐴 ) ) |
18 |
|
simprl |
⊢ ( ( ( 𝐴 𝐸 ( 𝐸 ‘ 𝐴 ) ∧ ( 𝐸 ‘ 𝐴 ) ( 𝐶 ∘ 𝐷 ) 𝐵 ) ∧ ( ( 𝐸 ‘ 𝐴 ) 𝐷 ( 𝐷 ‘ ( 𝐸 ‘ 𝐴 ) ) ∧ ( 𝐷 ‘ ( 𝐸 ‘ 𝐴 ) ) 𝐶 𝐵 ) ) → ( 𝐸 ‘ 𝐴 ) 𝐷 ( 𝐷 ‘ ( 𝐸 ‘ 𝐴 ) ) ) |
19 |
|
simprr |
⊢ ( ( ( 𝐴 𝐸 ( 𝐸 ‘ 𝐴 ) ∧ ( 𝐸 ‘ 𝐴 ) ( 𝐶 ∘ 𝐷 ) 𝐵 ) ∧ ( ( 𝐸 ‘ 𝐴 ) 𝐷 ( 𝐷 ‘ ( 𝐸 ‘ 𝐴 ) ) ∧ ( 𝐷 ‘ ( 𝐸 ‘ 𝐴 ) ) 𝐶 𝐵 ) ) → ( 𝐷 ‘ ( 𝐸 ‘ 𝐴 ) ) 𝐶 𝐵 ) |
20 |
17 18 19
|
3jca |
⊢ ( ( ( 𝐴 𝐸 ( 𝐸 ‘ 𝐴 ) ∧ ( 𝐸 ‘ 𝐴 ) ( 𝐶 ∘ 𝐷 ) 𝐵 ) ∧ ( ( 𝐸 ‘ 𝐴 ) 𝐷 ( 𝐷 ‘ ( 𝐸 ‘ 𝐴 ) ) ∧ ( 𝐷 ‘ ( 𝐸 ‘ 𝐴 ) ) 𝐶 𝐵 ) ) → ( 𝐴 𝐸 ( 𝐸 ‘ 𝐴 ) ∧ ( 𝐸 ‘ 𝐴 ) 𝐷 ( 𝐷 ‘ ( 𝐸 ‘ 𝐴 ) ) ∧ ( 𝐷 ‘ ( 𝐸 ‘ 𝐴 ) ) 𝐶 𝐵 ) ) |
21 |
16 20
|
syl |
⊢ ( 𝜑 → ( 𝐴 𝐸 ( 𝐸 ‘ 𝐴 ) ∧ ( 𝐸 ‘ 𝐴 ) 𝐷 ( 𝐷 ‘ ( 𝐸 ‘ 𝐴 ) ) ∧ ( 𝐷 ‘ ( 𝐸 ‘ 𝐴 ) ) 𝐶 𝐵 ) ) |