| Step |
Hyp |
Ref |
Expression |
| 1 |
|
brcofffn.c |
⊢ ( 𝜑 → 𝐶 Fn 𝑍 ) |
| 2 |
|
brcofffn.d |
⊢ ( 𝜑 → 𝐷 : 𝑌 ⟶ 𝑍 ) |
| 3 |
|
brcofffn.e |
⊢ ( 𝜑 → 𝐸 : 𝑋 ⟶ 𝑌 ) |
| 4 |
|
brcofffn.r |
⊢ ( 𝜑 → 𝐴 ( 𝐶 ∘ ( 𝐷 ∘ 𝐸 ) ) 𝐵 ) |
| 5 |
|
fnfco |
⊢ ( ( 𝐶 Fn 𝑍 ∧ 𝐷 : 𝑌 ⟶ 𝑍 ) → ( 𝐶 ∘ 𝐷 ) Fn 𝑌 ) |
| 6 |
1 2 5
|
syl2anc |
⊢ ( 𝜑 → ( 𝐶 ∘ 𝐷 ) Fn 𝑌 ) |
| 7 |
|
coass |
⊢ ( ( 𝐶 ∘ 𝐷 ) ∘ 𝐸 ) = ( 𝐶 ∘ ( 𝐷 ∘ 𝐸 ) ) |
| 8 |
7
|
breqi |
⊢ ( 𝐴 ( ( 𝐶 ∘ 𝐷 ) ∘ 𝐸 ) 𝐵 ↔ 𝐴 ( 𝐶 ∘ ( 𝐷 ∘ 𝐸 ) ) 𝐵 ) |
| 9 |
4 8
|
sylibr |
⊢ ( 𝜑 → 𝐴 ( ( 𝐶 ∘ 𝐷 ) ∘ 𝐸 ) 𝐵 ) |
| 10 |
6 3 9
|
brcoffn |
⊢ ( 𝜑 → ( 𝐴 𝐸 ( 𝐸 ‘ 𝐴 ) ∧ ( 𝐸 ‘ 𝐴 ) ( 𝐶 ∘ 𝐷 ) 𝐵 ) ) |
| 11 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 𝐸 ( 𝐸 ‘ 𝐴 ) ∧ ( 𝐸 ‘ 𝐴 ) ( 𝐶 ∘ 𝐷 ) 𝐵 ) ) → 𝐶 Fn 𝑍 ) |
| 12 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 𝐸 ( 𝐸 ‘ 𝐴 ) ∧ ( 𝐸 ‘ 𝐴 ) ( 𝐶 ∘ 𝐷 ) 𝐵 ) ) → 𝐷 : 𝑌 ⟶ 𝑍 ) |
| 13 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝐴 𝐸 ( 𝐸 ‘ 𝐴 ) ∧ ( 𝐸 ‘ 𝐴 ) ( 𝐶 ∘ 𝐷 ) 𝐵 ) ) → ( 𝐸 ‘ 𝐴 ) ( 𝐶 ∘ 𝐷 ) 𝐵 ) |
| 14 |
11 12 13
|
brcoffn |
⊢ ( ( 𝜑 ∧ ( 𝐴 𝐸 ( 𝐸 ‘ 𝐴 ) ∧ ( 𝐸 ‘ 𝐴 ) ( 𝐶 ∘ 𝐷 ) 𝐵 ) ) → ( ( 𝐸 ‘ 𝐴 ) 𝐷 ( 𝐷 ‘ ( 𝐸 ‘ 𝐴 ) ) ∧ ( 𝐷 ‘ ( 𝐸 ‘ 𝐴 ) ) 𝐶 𝐵 ) ) |
| 15 |
14
|
ex |
⊢ ( 𝜑 → ( ( 𝐴 𝐸 ( 𝐸 ‘ 𝐴 ) ∧ ( 𝐸 ‘ 𝐴 ) ( 𝐶 ∘ 𝐷 ) 𝐵 ) → ( ( 𝐸 ‘ 𝐴 ) 𝐷 ( 𝐷 ‘ ( 𝐸 ‘ 𝐴 ) ) ∧ ( 𝐷 ‘ ( 𝐸 ‘ 𝐴 ) ) 𝐶 𝐵 ) ) ) |
| 16 |
10 15
|
jcai |
⊢ ( 𝜑 → ( ( 𝐴 𝐸 ( 𝐸 ‘ 𝐴 ) ∧ ( 𝐸 ‘ 𝐴 ) ( 𝐶 ∘ 𝐷 ) 𝐵 ) ∧ ( ( 𝐸 ‘ 𝐴 ) 𝐷 ( 𝐷 ‘ ( 𝐸 ‘ 𝐴 ) ) ∧ ( 𝐷 ‘ ( 𝐸 ‘ 𝐴 ) ) 𝐶 𝐵 ) ) ) |
| 17 |
|
simpll |
⊢ ( ( ( 𝐴 𝐸 ( 𝐸 ‘ 𝐴 ) ∧ ( 𝐸 ‘ 𝐴 ) ( 𝐶 ∘ 𝐷 ) 𝐵 ) ∧ ( ( 𝐸 ‘ 𝐴 ) 𝐷 ( 𝐷 ‘ ( 𝐸 ‘ 𝐴 ) ) ∧ ( 𝐷 ‘ ( 𝐸 ‘ 𝐴 ) ) 𝐶 𝐵 ) ) → 𝐴 𝐸 ( 𝐸 ‘ 𝐴 ) ) |
| 18 |
|
simprl |
⊢ ( ( ( 𝐴 𝐸 ( 𝐸 ‘ 𝐴 ) ∧ ( 𝐸 ‘ 𝐴 ) ( 𝐶 ∘ 𝐷 ) 𝐵 ) ∧ ( ( 𝐸 ‘ 𝐴 ) 𝐷 ( 𝐷 ‘ ( 𝐸 ‘ 𝐴 ) ) ∧ ( 𝐷 ‘ ( 𝐸 ‘ 𝐴 ) ) 𝐶 𝐵 ) ) → ( 𝐸 ‘ 𝐴 ) 𝐷 ( 𝐷 ‘ ( 𝐸 ‘ 𝐴 ) ) ) |
| 19 |
|
simprr |
⊢ ( ( ( 𝐴 𝐸 ( 𝐸 ‘ 𝐴 ) ∧ ( 𝐸 ‘ 𝐴 ) ( 𝐶 ∘ 𝐷 ) 𝐵 ) ∧ ( ( 𝐸 ‘ 𝐴 ) 𝐷 ( 𝐷 ‘ ( 𝐸 ‘ 𝐴 ) ) ∧ ( 𝐷 ‘ ( 𝐸 ‘ 𝐴 ) ) 𝐶 𝐵 ) ) → ( 𝐷 ‘ ( 𝐸 ‘ 𝐴 ) ) 𝐶 𝐵 ) |
| 20 |
17 18 19
|
3jca |
⊢ ( ( ( 𝐴 𝐸 ( 𝐸 ‘ 𝐴 ) ∧ ( 𝐸 ‘ 𝐴 ) ( 𝐶 ∘ 𝐷 ) 𝐵 ) ∧ ( ( 𝐸 ‘ 𝐴 ) 𝐷 ( 𝐷 ‘ ( 𝐸 ‘ 𝐴 ) ) ∧ ( 𝐷 ‘ ( 𝐸 ‘ 𝐴 ) ) 𝐶 𝐵 ) ) → ( 𝐴 𝐸 ( 𝐸 ‘ 𝐴 ) ∧ ( 𝐸 ‘ 𝐴 ) 𝐷 ( 𝐷 ‘ ( 𝐸 ‘ 𝐴 ) ) ∧ ( 𝐷 ‘ ( 𝐸 ‘ 𝐴 ) ) 𝐶 𝐵 ) ) |
| 21 |
16 20
|
syl |
⊢ ( 𝜑 → ( 𝐴 𝐸 ( 𝐸 ‘ 𝐴 ) ∧ ( 𝐸 ‘ 𝐴 ) 𝐷 ( 𝐷 ‘ ( 𝐸 ‘ 𝐴 ) ) ∧ ( 𝐷 ‘ ( 𝐸 ‘ 𝐴 ) ) 𝐶 𝐵 ) ) |