Metamath Proof Explorer


Theorem nfnf

Description: If x is not free in ph , then it is not free in F/ y ph . (Contributed by Mario Carneiro, 11-Aug-2016) (Proof shortened by Wolf Lammen, 30-Dec-2017)

Ref Expression
Hypothesis nfnf.1
|- F/ x ph
Assertion nfnf
|- F/ x F/ y ph

Proof

Step Hyp Ref Expression
1 nfnf.1
 |-  F/ x ph
2 df-nf
 |-  ( F/ y ph <-> ( E. y ph -> A. y ph ) )
3 1 nfex
 |-  F/ x E. y ph
4 1 nfal
 |-  F/ x A. y ph
5 3 4 nfim
 |-  F/ x ( E. y ph -> A. y ph )
6 2 5 nfxfr
 |-  F/ x F/ y ph