| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfsetrecs.1 |
|- F/_ x F |
| 2 |
|
df-setrecs |
|- setrecs ( F ) = U. { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) } |
| 3 |
|
nfv |
|- F/ x w C_ y |
| 4 |
|
nfv |
|- F/ x w C_ z |
| 5 |
|
nfcv |
|- F/_ x w |
| 6 |
1 5
|
nffv |
|- F/_ x ( F ` w ) |
| 7 |
|
nfcv |
|- F/_ x z |
| 8 |
6 7
|
nfss |
|- F/ x ( F ` w ) C_ z |
| 9 |
4 8
|
nfim |
|- F/ x ( w C_ z -> ( F ` w ) C_ z ) |
| 10 |
3 9
|
nfim |
|- F/ x ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) |
| 11 |
10
|
nfal |
|- F/ x A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) |
| 12 |
|
nfv |
|- F/ x y C_ z |
| 13 |
11 12
|
nfim |
|- F/ x ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) |
| 14 |
13
|
nfal |
|- F/ x A. z ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) |
| 15 |
14
|
nfab |
|- F/_ x { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) } |
| 16 |
15
|
nfuni |
|- F/_ x U. { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) } |
| 17 |
2 16
|
nfcxfr |
|- F/_ x setrecs ( F ) |