Step |
Hyp |
Ref |
Expression |
1 |
|
nfsetrecs.1 |
|- F/_ x F |
2 |
|
df-setrecs |
|- setrecs ( F ) = U. { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) } |
3 |
|
nfv |
|- F/ x w C_ y |
4 |
|
nfv |
|- F/ x w C_ z |
5 |
|
nfcv |
|- F/_ x w |
6 |
1 5
|
nffv |
|- F/_ x ( F ` w ) |
7 |
|
nfcv |
|- F/_ x z |
8 |
6 7
|
nfss |
|- F/ x ( F ` w ) C_ z |
9 |
4 8
|
nfim |
|- F/ x ( w C_ z -> ( F ` w ) C_ z ) |
10 |
3 9
|
nfim |
|- F/ x ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) |
11 |
10
|
nfal |
|- F/ x A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) |
12 |
|
nfv |
|- F/ x y C_ z |
13 |
11 12
|
nfim |
|- F/ x ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) |
14 |
13
|
nfal |
|- F/ x A. z ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) |
15 |
14
|
nfab |
|- F/_ x { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) } |
16 |
15
|
nfuni |
|- F/_ x U. { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) } |
17 |
2 16
|
nfcxfr |
|- F/_ x setrecs ( F ) |