| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfsetrecs.1 |  |-  F/_ x F | 
						
							| 2 |  | df-setrecs |  |-  setrecs ( F ) = U. { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) } | 
						
							| 3 |  | nfv |  |-  F/ x w C_ y | 
						
							| 4 |  | nfv |  |-  F/ x w C_ z | 
						
							| 5 |  | nfcv |  |-  F/_ x w | 
						
							| 6 | 1 5 | nffv |  |-  F/_ x ( F ` w ) | 
						
							| 7 |  | nfcv |  |-  F/_ x z | 
						
							| 8 | 6 7 | nfss |  |-  F/ x ( F ` w ) C_ z | 
						
							| 9 | 4 8 | nfim |  |-  F/ x ( w C_ z -> ( F ` w ) C_ z ) | 
						
							| 10 | 3 9 | nfim |  |-  F/ x ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) | 
						
							| 11 | 10 | nfal |  |-  F/ x A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) | 
						
							| 12 |  | nfv |  |-  F/ x y C_ z | 
						
							| 13 | 11 12 | nfim |  |-  F/ x ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) | 
						
							| 14 | 13 | nfal |  |-  F/ x A. z ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) | 
						
							| 15 | 14 | nfab |  |-  F/_ x { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) } | 
						
							| 16 | 15 | nfuni |  |-  F/_ x U. { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( F ` w ) C_ z ) ) -> y C_ z ) } | 
						
							| 17 | 2 16 | nfcxfr |  |-  F/_ x setrecs ( F ) |