Metamath Proof Explorer


Theorem nfsetrecs

Description: Bound-variable hypothesis builder for setrecs . (Contributed by Emmett Weisz, 21-Oct-2021)

Ref Expression
Hypothesis nfsetrecs.1 𝑥 𝐹
Assertion nfsetrecs 𝑥 setrecs ( 𝐹 )

Proof

Step Hyp Ref Expression
1 nfsetrecs.1 𝑥 𝐹
2 df-setrecs setrecs ( 𝐹 ) = { 𝑦 ∣ ∀ 𝑧 ( ∀ 𝑤 ( 𝑤𝑦 → ( 𝑤𝑧 → ( 𝐹𝑤 ) ⊆ 𝑧 ) ) → 𝑦𝑧 ) }
3 nfv 𝑥 𝑤𝑦
4 nfv 𝑥 𝑤𝑧
5 nfcv 𝑥 𝑤
6 1 5 nffv 𝑥 ( 𝐹𝑤 )
7 nfcv 𝑥 𝑧
8 6 7 nfss 𝑥 ( 𝐹𝑤 ) ⊆ 𝑧
9 4 8 nfim 𝑥 ( 𝑤𝑧 → ( 𝐹𝑤 ) ⊆ 𝑧 )
10 3 9 nfim 𝑥 ( 𝑤𝑦 → ( 𝑤𝑧 → ( 𝐹𝑤 ) ⊆ 𝑧 ) )
11 10 nfal 𝑥𝑤 ( 𝑤𝑦 → ( 𝑤𝑧 → ( 𝐹𝑤 ) ⊆ 𝑧 ) )
12 nfv 𝑥 𝑦𝑧
13 11 12 nfim 𝑥 ( ∀ 𝑤 ( 𝑤𝑦 → ( 𝑤𝑧 → ( 𝐹𝑤 ) ⊆ 𝑧 ) ) → 𝑦𝑧 )
14 13 nfal 𝑥𝑧 ( ∀ 𝑤 ( 𝑤𝑦 → ( 𝑤𝑧 → ( 𝐹𝑤 ) ⊆ 𝑧 ) ) → 𝑦𝑧 )
15 14 nfab 𝑥 { 𝑦 ∣ ∀ 𝑧 ( ∀ 𝑤 ( 𝑤𝑦 → ( 𝑤𝑧 → ( 𝐹𝑤 ) ⊆ 𝑧 ) ) → 𝑦𝑧 ) }
16 15 nfuni 𝑥 { 𝑦 ∣ ∀ 𝑧 ( ∀ 𝑤 ( 𝑤𝑦 → ( 𝑤𝑧 → ( 𝐹𝑤 ) ⊆ 𝑧 ) ) → 𝑦𝑧 ) }
17 2 16 nfcxfr 𝑥 setrecs ( 𝐹 )