| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfsetrecs.1 |
⊢ Ⅎ 𝑥 𝐹 |
| 2 |
|
df-setrecs |
⊢ setrecs ( 𝐹 ) = ∪ { 𝑦 ∣ ∀ 𝑧 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑦 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → 𝑦 ⊆ 𝑧 ) } |
| 3 |
|
nfv |
⊢ Ⅎ 𝑥 𝑤 ⊆ 𝑦 |
| 4 |
|
nfv |
⊢ Ⅎ 𝑥 𝑤 ⊆ 𝑧 |
| 5 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑤 |
| 6 |
1 5
|
nffv |
⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑤 ) |
| 7 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑧 |
| 8 |
6 7
|
nfss |
⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 |
| 9 |
4 8
|
nfim |
⊢ Ⅎ 𝑥 ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) |
| 10 |
3 9
|
nfim |
⊢ Ⅎ 𝑥 ( 𝑤 ⊆ 𝑦 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) |
| 11 |
10
|
nfal |
⊢ Ⅎ 𝑥 ∀ 𝑤 ( 𝑤 ⊆ 𝑦 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) |
| 12 |
|
nfv |
⊢ Ⅎ 𝑥 𝑦 ⊆ 𝑧 |
| 13 |
11 12
|
nfim |
⊢ Ⅎ 𝑥 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑦 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → 𝑦 ⊆ 𝑧 ) |
| 14 |
13
|
nfal |
⊢ Ⅎ 𝑥 ∀ 𝑧 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑦 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → 𝑦 ⊆ 𝑧 ) |
| 15 |
14
|
nfab |
⊢ Ⅎ 𝑥 { 𝑦 ∣ ∀ 𝑧 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑦 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → 𝑦 ⊆ 𝑧 ) } |
| 16 |
15
|
nfuni |
⊢ Ⅎ 𝑥 ∪ { 𝑦 ∣ ∀ 𝑧 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑦 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → 𝑦 ⊆ 𝑧 ) } |
| 17 |
2 16
|
nfcxfr |
⊢ Ⅎ 𝑥 setrecs ( 𝐹 ) |