| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfsetrecs.1 | ⊢ Ⅎ 𝑥 𝐹 | 
						
							| 2 |  | df-setrecs | ⊢ setrecs ( 𝐹 )  =  ∪  { 𝑦  ∣  ∀ 𝑧 ( ∀ 𝑤 ( 𝑤  ⊆  𝑦  →  ( 𝑤  ⊆  𝑧  →  ( 𝐹 ‘ 𝑤 )  ⊆  𝑧 ) )  →  𝑦  ⊆  𝑧 ) } | 
						
							| 3 |  | nfv | ⊢ Ⅎ 𝑥 𝑤  ⊆  𝑦 | 
						
							| 4 |  | nfv | ⊢ Ⅎ 𝑥 𝑤  ⊆  𝑧 | 
						
							| 5 |  | nfcv | ⊢ Ⅎ 𝑥 𝑤 | 
						
							| 6 | 1 5 | nffv | ⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑤 ) | 
						
							| 7 |  | nfcv | ⊢ Ⅎ 𝑥 𝑧 | 
						
							| 8 | 6 7 | nfss | ⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑤 )  ⊆  𝑧 | 
						
							| 9 | 4 8 | nfim | ⊢ Ⅎ 𝑥 ( 𝑤  ⊆  𝑧  →  ( 𝐹 ‘ 𝑤 )  ⊆  𝑧 ) | 
						
							| 10 | 3 9 | nfim | ⊢ Ⅎ 𝑥 ( 𝑤  ⊆  𝑦  →  ( 𝑤  ⊆  𝑧  →  ( 𝐹 ‘ 𝑤 )  ⊆  𝑧 ) ) | 
						
							| 11 | 10 | nfal | ⊢ Ⅎ 𝑥 ∀ 𝑤 ( 𝑤  ⊆  𝑦  →  ( 𝑤  ⊆  𝑧  →  ( 𝐹 ‘ 𝑤 )  ⊆  𝑧 ) ) | 
						
							| 12 |  | nfv | ⊢ Ⅎ 𝑥 𝑦  ⊆  𝑧 | 
						
							| 13 | 11 12 | nfim | ⊢ Ⅎ 𝑥 ( ∀ 𝑤 ( 𝑤  ⊆  𝑦  →  ( 𝑤  ⊆  𝑧  →  ( 𝐹 ‘ 𝑤 )  ⊆  𝑧 ) )  →  𝑦  ⊆  𝑧 ) | 
						
							| 14 | 13 | nfal | ⊢ Ⅎ 𝑥 ∀ 𝑧 ( ∀ 𝑤 ( 𝑤  ⊆  𝑦  →  ( 𝑤  ⊆  𝑧  →  ( 𝐹 ‘ 𝑤 )  ⊆  𝑧 ) )  →  𝑦  ⊆  𝑧 ) | 
						
							| 15 | 14 | nfab | ⊢ Ⅎ 𝑥 { 𝑦  ∣  ∀ 𝑧 ( ∀ 𝑤 ( 𝑤  ⊆  𝑦  →  ( 𝑤  ⊆  𝑧  →  ( 𝐹 ‘ 𝑤 )  ⊆  𝑧 ) )  →  𝑦  ⊆  𝑧 ) } | 
						
							| 16 | 15 | nfuni | ⊢ Ⅎ 𝑥 ∪  { 𝑦  ∣  ∀ 𝑧 ( ∀ 𝑤 ( 𝑤  ⊆  𝑦  →  ( 𝑤  ⊆  𝑧  →  ( 𝐹 ‘ 𝑤 )  ⊆  𝑧 ) )  →  𝑦  ⊆  𝑧 ) } | 
						
							| 17 | 2 16 | nfcxfr | ⊢ Ⅎ 𝑥 setrecs ( 𝐹 ) |