Step |
Hyp |
Ref |
Expression |
1 |
|
nfsetrecs.1 |
⊢ Ⅎ 𝑥 𝐹 |
2 |
|
df-setrecs |
⊢ setrecs ( 𝐹 ) = ∪ { 𝑦 ∣ ∀ 𝑧 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑦 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → 𝑦 ⊆ 𝑧 ) } |
3 |
|
nfv |
⊢ Ⅎ 𝑥 𝑤 ⊆ 𝑦 |
4 |
|
nfv |
⊢ Ⅎ 𝑥 𝑤 ⊆ 𝑧 |
5 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑤 |
6 |
1 5
|
nffv |
⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑤 ) |
7 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑧 |
8 |
6 7
|
nfss |
⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 |
9 |
4 8
|
nfim |
⊢ Ⅎ 𝑥 ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) |
10 |
3 9
|
nfim |
⊢ Ⅎ 𝑥 ( 𝑤 ⊆ 𝑦 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) |
11 |
10
|
nfal |
⊢ Ⅎ 𝑥 ∀ 𝑤 ( 𝑤 ⊆ 𝑦 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) |
12 |
|
nfv |
⊢ Ⅎ 𝑥 𝑦 ⊆ 𝑧 |
13 |
11 12
|
nfim |
⊢ Ⅎ 𝑥 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑦 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → 𝑦 ⊆ 𝑧 ) |
14 |
13
|
nfal |
⊢ Ⅎ 𝑥 ∀ 𝑧 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑦 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → 𝑦 ⊆ 𝑧 ) |
15 |
14
|
nfab |
⊢ Ⅎ 𝑥 { 𝑦 ∣ ∀ 𝑧 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑦 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → 𝑦 ⊆ 𝑧 ) } |
16 |
15
|
nfuni |
⊢ Ⅎ 𝑥 ∪ { 𝑦 ∣ ∀ 𝑧 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑦 → ( 𝑤 ⊆ 𝑧 → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑧 ) ) → 𝑦 ⊆ 𝑧 ) } |
17 |
2 16
|
nfcxfr |
⊢ Ⅎ 𝑥 setrecs ( 𝐹 ) |