Metamath Proof Explorer


Theorem nic-dfim

Description: This theorem "defines" implication in terms of 'nand'. Analogous to nanim . In a pure (standalone) treatment of Nicod's axiom, this theorem would be changed to a definition ($a statement). (Contributed by NM, 11-Dec-2008) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion nic-dfim
|- ( ( ( ph -/\ ( ps -/\ ps ) ) -/\ ( ph -> ps ) ) -/\ ( ( ( ph -/\ ( ps -/\ ps ) ) -/\ ( ph -/\ ( ps -/\ ps ) ) ) -/\ ( ( ph -> ps ) -/\ ( ph -> ps ) ) ) )

Proof

Step Hyp Ref Expression
1 nanim
 |-  ( ( ph -> ps ) <-> ( ph -/\ ( ps -/\ ps ) ) )
2 1 bicomi
 |-  ( ( ph -/\ ( ps -/\ ps ) ) <-> ( ph -> ps ) )
3 nanbi
 |-  ( ( ( ph -/\ ( ps -/\ ps ) ) <-> ( ph -> ps ) ) <-> ( ( ( ph -/\ ( ps -/\ ps ) ) -/\ ( ph -> ps ) ) -/\ ( ( ( ph -/\ ( ps -/\ ps ) ) -/\ ( ph -/\ ( ps -/\ ps ) ) ) -/\ ( ( ph -> ps ) -/\ ( ph -> ps ) ) ) ) )
4 2 3 mpbi
 |-  ( ( ( ph -/\ ( ps -/\ ps ) ) -/\ ( ph -> ps ) ) -/\ ( ( ( ph -/\ ( ps -/\ ps ) ) -/\ ( ph -/\ ( ps -/\ ps ) ) ) -/\ ( ( ph -> ps ) -/\ ( ph -> ps ) ) ) )