Metamath Proof Explorer


Theorem nic-dfneg

Description: This theorem "defines" negation in terms of 'nand'. Analogous to nannot . In a pure (standalone) treatment of Nicod's axiom, this theorem would be changed to a definition ($a statement). (Contributed by NM, 11-Dec-2008) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion nic-dfneg
|- ( ( ( ph -/\ ph ) -/\ -. ph ) -/\ ( ( ( ph -/\ ph ) -/\ ( ph -/\ ph ) ) -/\ ( -. ph -/\ -. ph ) ) )

Proof

Step Hyp Ref Expression
1 nannot
 |-  ( -. ph <-> ( ph -/\ ph ) )
2 1 bicomi
 |-  ( ( ph -/\ ph ) <-> -. ph )
3 nanbi
 |-  ( ( ( ph -/\ ph ) <-> -. ph ) <-> ( ( ( ph -/\ ph ) -/\ -. ph ) -/\ ( ( ( ph -/\ ph ) -/\ ( ph -/\ ph ) ) -/\ ( -. ph -/\ -. ph ) ) ) )
4 2 3 mpbi
 |-  ( ( ( ph -/\ ph ) -/\ -. ph ) -/\ ( ( ( ph -/\ ph ) -/\ ( ph -/\ ph ) ) -/\ ( -. ph -/\ -. ph ) ) )