Metamath Proof Explorer


Theorem nic-dfneg

Description: This theorem "defines" negation in terms of 'nand'. Analogous to nannot . In a pure (standalone) treatment of Nicod's axiom, this theorem would be changed to a definition ($a statement). (Contributed by NM, 11-Dec-2008) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion nic-dfneg ( ( ( 𝜑𝜑 ) ⊼ ¬ 𝜑 ) ⊼ ( ( ( 𝜑𝜑 ) ⊼ ( 𝜑𝜑 ) ) ⊼ ( ¬ 𝜑 ⊼ ¬ 𝜑 ) ) )

Proof

Step Hyp Ref Expression
1 nannot ( ¬ 𝜑 ↔ ( 𝜑𝜑 ) )
2 1 bicomi ( ( 𝜑𝜑 ) ↔ ¬ 𝜑 )
3 nanbi ( ( ( 𝜑𝜑 ) ↔ ¬ 𝜑 ) ↔ ( ( ( 𝜑𝜑 ) ⊼ ¬ 𝜑 ) ⊼ ( ( ( 𝜑𝜑 ) ⊼ ( 𝜑𝜑 ) ) ⊼ ( ¬ 𝜑 ⊼ ¬ 𝜑 ) ) ) )
4 2 3 mpbi ( ( ( 𝜑𝜑 ) ⊼ ¬ 𝜑 ) ⊼ ( ( ( 𝜑𝜑 ) ⊼ ( 𝜑𝜑 ) ) ⊼ ( ¬ 𝜑 ⊼ ¬ 𝜑 ) ) )