| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0z |
|- ( N e. NN0 -> N e. ZZ ) |
| 2 |
|
evend2 |
|- ( N e. ZZ -> ( 2 || N <-> ( N / 2 ) e. ZZ ) ) |
| 3 |
1 2
|
syl |
|- ( N e. NN0 -> ( 2 || N <-> ( N / 2 ) e. ZZ ) ) |
| 4 |
|
nn0re |
|- ( N e. NN0 -> N e. RR ) |
| 5 |
|
2rp |
|- 2 e. RR+ |
| 6 |
5
|
a1i |
|- ( N e. NN0 -> 2 e. RR+ ) |
| 7 |
|
nn0ge0 |
|- ( N e. NN0 -> 0 <_ N ) |
| 8 |
4 6 7
|
divge0d |
|- ( N e. NN0 -> 0 <_ ( N / 2 ) ) |
| 9 |
8
|
anim1ci |
|- ( ( N e. NN0 /\ ( N / 2 ) e. ZZ ) -> ( ( N / 2 ) e. ZZ /\ 0 <_ ( N / 2 ) ) ) |
| 10 |
|
elnn0z |
|- ( ( N / 2 ) e. NN0 <-> ( ( N / 2 ) e. ZZ /\ 0 <_ ( N / 2 ) ) ) |
| 11 |
9 10
|
sylibr |
|- ( ( N e. NN0 /\ ( N / 2 ) e. ZZ ) -> ( N / 2 ) e. NN0 ) |
| 12 |
11
|
ex |
|- ( N e. NN0 -> ( ( N / 2 ) e. ZZ -> ( N / 2 ) e. NN0 ) ) |
| 13 |
3 12
|
sylbid |
|- ( N e. NN0 -> ( 2 || N -> ( N / 2 ) e. NN0 ) ) |
| 14 |
13
|
imp |
|- ( ( N e. NN0 /\ 2 || N ) -> ( N / 2 ) e. NN0 ) |