| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elnn0 |
|- ( ( N / 2 ) e. NN0 <-> ( ( N / 2 ) e. NN \/ ( N / 2 ) = 0 ) ) |
| 2 |
|
nncn |
|- ( N e. NN -> N e. CC ) |
| 3 |
|
2cnd |
|- ( N e. NN -> 2 e. CC ) |
| 4 |
|
2ne0 |
|- 2 =/= 0 |
| 5 |
4
|
a1i |
|- ( N e. NN -> 2 =/= 0 ) |
| 6 |
2 3 5
|
diveq0ad |
|- ( N e. NN -> ( ( N / 2 ) = 0 <-> N = 0 ) ) |
| 7 |
|
eleq1 |
|- ( N = 0 -> ( N e. NN <-> 0 e. NN ) ) |
| 8 |
|
0nnn |
|- -. 0 e. NN |
| 9 |
8
|
pm2.21i |
|- ( 0 e. NN -> ( N / 2 ) e. NN ) |
| 10 |
7 9
|
biimtrdi |
|- ( N = 0 -> ( N e. NN -> ( N / 2 ) e. NN ) ) |
| 11 |
10
|
com12 |
|- ( N e. NN -> ( N = 0 -> ( N / 2 ) e. NN ) ) |
| 12 |
6 11
|
sylbid |
|- ( N e. NN -> ( ( N / 2 ) = 0 -> ( N / 2 ) e. NN ) ) |
| 13 |
12
|
com12 |
|- ( ( N / 2 ) = 0 -> ( N e. NN -> ( N / 2 ) e. NN ) ) |
| 14 |
13
|
jao1i |
|- ( ( ( N / 2 ) e. NN \/ ( N / 2 ) = 0 ) -> ( N e. NN -> ( N / 2 ) e. NN ) ) |
| 15 |
1 14
|
sylbi |
|- ( ( N / 2 ) e. NN0 -> ( N e. NN -> ( N / 2 ) e. NN ) ) |
| 16 |
15
|
com12 |
|- ( N e. NN -> ( ( N / 2 ) e. NN0 -> ( N / 2 ) e. NN ) ) |
| 17 |
|
nnnn0 |
|- ( ( N / 2 ) e. NN -> ( N / 2 ) e. NN0 ) |
| 18 |
16 17
|
impbid1 |
|- ( N e. NN -> ( ( N / 2 ) e. NN0 <-> ( N / 2 ) e. NN ) ) |