| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0opth.1 |  |-  A e. NN0 | 
						
							| 2 |  | nn0opth.2 |  |-  B e. NN0 | 
						
							| 3 |  | nn0opth.3 |  |-  C e. NN0 | 
						
							| 4 |  | nn0opth.4 |  |-  D e. NN0 | 
						
							| 5 | 1 | nn0cni |  |-  A e. CC | 
						
							| 6 | 2 | nn0cni |  |-  B e. CC | 
						
							| 7 | 5 6 | addcli |  |-  ( A + B ) e. CC | 
						
							| 8 | 7 | sqvali |  |-  ( ( A + B ) ^ 2 ) = ( ( A + B ) x. ( A + B ) ) | 
						
							| 9 | 8 | oveq1i |  |-  ( ( ( A + B ) ^ 2 ) + B ) = ( ( ( A + B ) x. ( A + B ) ) + B ) | 
						
							| 10 | 3 | nn0cni |  |-  C e. CC | 
						
							| 11 | 4 | nn0cni |  |-  D e. CC | 
						
							| 12 | 10 11 | addcli |  |-  ( C + D ) e. CC | 
						
							| 13 | 12 | sqvali |  |-  ( ( C + D ) ^ 2 ) = ( ( C + D ) x. ( C + D ) ) | 
						
							| 14 | 13 | oveq1i |  |-  ( ( ( C + D ) ^ 2 ) + D ) = ( ( ( C + D ) x. ( C + D ) ) + D ) | 
						
							| 15 | 9 14 | eqeq12i |  |-  ( ( ( ( A + B ) ^ 2 ) + B ) = ( ( ( C + D ) ^ 2 ) + D ) <-> ( ( ( A + B ) x. ( A + B ) ) + B ) = ( ( ( C + D ) x. ( C + D ) ) + D ) ) | 
						
							| 16 | 1 2 3 4 | nn0opthi |  |-  ( ( ( ( A + B ) x. ( A + B ) ) + B ) = ( ( ( C + D ) x. ( C + D ) ) + D ) <-> ( A = C /\ B = D ) ) | 
						
							| 17 | 15 16 | bitri |  |-  ( ( ( ( A + B ) ^ 2 ) + B ) = ( ( ( C + D ) ^ 2 ) + D ) <-> ( A = C /\ B = D ) ) |