Metamath Proof Explorer


Theorem nn0opth2i

Description: An ordered pair theorem for nonnegative integers. Theorem 17.3 of Quine p. 124. See comments for nn0opthi . (Contributed by NM, 22-Jul-2004)

Ref Expression
Hypotheses nn0opth.1 A0
nn0opth.2 B0
nn0opth.3 C0
nn0opth.4 D0
Assertion nn0opth2i A+B2+B=C+D2+DA=CB=D

Proof

Step Hyp Ref Expression
1 nn0opth.1 A0
2 nn0opth.2 B0
3 nn0opth.3 C0
4 nn0opth.4 D0
5 1 nn0cni A
6 2 nn0cni B
7 5 6 addcli A+B
8 7 sqvali A+B2=A+BA+B
9 8 oveq1i A+B2+B=A+BA+B+B
10 3 nn0cni C
11 4 nn0cni D
12 10 11 addcli C+D
13 12 sqvali C+D2=C+DC+D
14 13 oveq1i C+D2+D=C+DC+D+D
15 9 14 eqeq12i A+B2+B=C+D2+DA+BA+B+B=C+DC+D+D
16 1 2 3 4 nn0opthi A+BA+B+B=C+DC+D+DA=CB=D
17 15 16 bitri A+B2+B=C+D2+DA=CB=D