Metamath Proof Explorer


Theorem nn0opth2

Description: An ordered pair theorem for nonnegative integers. Theorem 17.3 of Quine p. 124. See nn0opthi . (Contributed by NM, 22-Jul-2004)

Ref Expression
Assertion nn0opth2 A0B0C0D0A+B2+B=C+D2+DA=CB=D

Proof

Step Hyp Ref Expression
1 oveq1 A=ifA0A0A+B=ifA0A0+B
2 1 oveq1d A=ifA0A0A+B2=ifA0A0+B2
3 2 oveq1d A=ifA0A0A+B2+B=ifA0A0+B2+B
4 3 eqeq1d A=ifA0A0A+B2+B=C+D2+DifA0A0+B2+B=C+D2+D
5 eqeq1 A=ifA0A0A=CifA0A0=C
6 5 anbi1d A=ifA0A0A=CB=DifA0A0=CB=D
7 4 6 bibi12d A=ifA0A0A+B2+B=C+D2+DA=CB=DifA0A0+B2+B=C+D2+DifA0A0=CB=D
8 oveq2 B=ifB0B0ifA0A0+B=ifA0A0+ifB0B0
9 8 oveq1d B=ifB0B0ifA0A0+B2=ifA0A0+ifB0B02
10 id B=ifB0B0B=ifB0B0
11 9 10 oveq12d B=ifB0B0ifA0A0+B2+B=ifA0A0+ifB0B02+ifB0B0
12 11 eqeq1d B=ifB0B0ifA0A0+B2+B=C+D2+DifA0A0+ifB0B02+ifB0B0=C+D2+D
13 eqeq1 B=ifB0B0B=DifB0B0=D
14 13 anbi2d B=ifB0B0ifA0A0=CB=DifA0A0=CifB0B0=D
15 12 14 bibi12d B=ifB0B0ifA0A0+B2+B=C+D2+DifA0A0=CB=DifA0A0+ifB0B02+ifB0B0=C+D2+DifA0A0=CifB0B0=D
16 oveq1 C=ifC0C0C+D=ifC0C0+D
17 16 oveq1d C=ifC0C0C+D2=ifC0C0+D2
18 17 oveq1d C=ifC0C0C+D2+D=ifC0C0+D2+D
19 18 eqeq2d C=ifC0C0ifA0A0+ifB0B02+ifB0B0=C+D2+DifA0A0+ifB0B02+ifB0B0=ifC0C0+D2+D
20 eqeq2 C=ifC0C0ifA0A0=CifA0A0=ifC0C0
21 20 anbi1d C=ifC0C0ifA0A0=CifB0B0=DifA0A0=ifC0C0ifB0B0=D
22 19 21 bibi12d C=ifC0C0ifA0A0+ifB0B02+ifB0B0=C+D2+DifA0A0=CifB0B0=DifA0A0+ifB0B02+ifB0B0=ifC0C0+D2+DifA0A0=ifC0C0ifB0B0=D
23 oveq2 D=ifD0D0ifC0C0+D=ifC0C0+ifD0D0
24 23 oveq1d D=ifD0D0ifC0C0+D2=ifC0C0+ifD0D02
25 id D=ifD0D0D=ifD0D0
26 24 25 oveq12d D=ifD0D0ifC0C0+D2+D=ifC0C0+ifD0D02+ifD0D0
27 26 eqeq2d D=ifD0D0ifA0A0+ifB0B02+ifB0B0=ifC0C0+D2+DifA0A0+ifB0B02+ifB0B0=ifC0C0+ifD0D02+ifD0D0
28 eqeq2 D=ifD0D0ifB0B0=DifB0B0=ifD0D0
29 28 anbi2d D=ifD0D0ifA0A0=ifC0C0ifB0B0=DifA0A0=ifC0C0ifB0B0=ifD0D0
30 27 29 bibi12d D=ifD0D0ifA0A0+ifB0B02+ifB0B0=ifC0C0+D2+DifA0A0=ifC0C0ifB0B0=DifA0A0+ifB0B02+ifB0B0=ifC0C0+ifD0D02+ifD0D0ifA0A0=ifC0C0ifB0B0=ifD0D0
31 0nn0 00
32 31 elimel ifA0A00
33 31 elimel ifB0B00
34 31 elimel ifC0C00
35 31 elimel ifD0D00
36 32 33 34 35 nn0opth2i ifA0A0+ifB0B02+ifB0B0=ifC0C0+ifD0D02+ifD0D0ifA0A0=ifC0C0ifB0B0=ifD0D0
37 7 15 22 30 36 dedth4h A0B0C0D0A+B2+B=C+D2+DA=CB=D