| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq1 | ⊢ ( 𝐴  =  if ( 𝐴  ∈  ℕ0 ,  𝐴 ,  0 )  →  ( 𝐴  +  𝐵 )  =  ( if ( 𝐴  ∈  ℕ0 ,  𝐴 ,  0 )  +  𝐵 ) ) | 
						
							| 2 | 1 | oveq1d | ⊢ ( 𝐴  =  if ( 𝐴  ∈  ℕ0 ,  𝐴 ,  0 )  →  ( ( 𝐴  +  𝐵 ) ↑ 2 )  =  ( ( if ( 𝐴  ∈  ℕ0 ,  𝐴 ,  0 )  +  𝐵 ) ↑ 2 ) ) | 
						
							| 3 | 2 | oveq1d | ⊢ ( 𝐴  =  if ( 𝐴  ∈  ℕ0 ,  𝐴 ,  0 )  →  ( ( ( 𝐴  +  𝐵 ) ↑ 2 )  +  𝐵 )  =  ( ( ( if ( 𝐴  ∈  ℕ0 ,  𝐴 ,  0 )  +  𝐵 ) ↑ 2 )  +  𝐵 ) ) | 
						
							| 4 | 3 | eqeq1d | ⊢ ( 𝐴  =  if ( 𝐴  ∈  ℕ0 ,  𝐴 ,  0 )  →  ( ( ( ( 𝐴  +  𝐵 ) ↑ 2 )  +  𝐵 )  =  ( ( ( 𝐶  +  𝐷 ) ↑ 2 )  +  𝐷 )  ↔  ( ( ( if ( 𝐴  ∈  ℕ0 ,  𝐴 ,  0 )  +  𝐵 ) ↑ 2 )  +  𝐵 )  =  ( ( ( 𝐶  +  𝐷 ) ↑ 2 )  +  𝐷 ) ) ) | 
						
							| 5 |  | eqeq1 | ⊢ ( 𝐴  =  if ( 𝐴  ∈  ℕ0 ,  𝐴 ,  0 )  →  ( 𝐴  =  𝐶  ↔  if ( 𝐴  ∈  ℕ0 ,  𝐴 ,  0 )  =  𝐶 ) ) | 
						
							| 6 | 5 | anbi1d | ⊢ ( 𝐴  =  if ( 𝐴  ∈  ℕ0 ,  𝐴 ,  0 )  →  ( ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 )  ↔  ( if ( 𝐴  ∈  ℕ0 ,  𝐴 ,  0 )  =  𝐶  ∧  𝐵  =  𝐷 ) ) ) | 
						
							| 7 | 4 6 | bibi12d | ⊢ ( 𝐴  =  if ( 𝐴  ∈  ℕ0 ,  𝐴 ,  0 )  →  ( ( ( ( ( 𝐴  +  𝐵 ) ↑ 2 )  +  𝐵 )  =  ( ( ( 𝐶  +  𝐷 ) ↑ 2 )  +  𝐷 )  ↔  ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 ) )  ↔  ( ( ( ( if ( 𝐴  ∈  ℕ0 ,  𝐴 ,  0 )  +  𝐵 ) ↑ 2 )  +  𝐵 )  =  ( ( ( 𝐶  +  𝐷 ) ↑ 2 )  +  𝐷 )  ↔  ( if ( 𝐴  ∈  ℕ0 ,  𝐴 ,  0 )  =  𝐶  ∧  𝐵  =  𝐷 ) ) ) ) | 
						
							| 8 |  | oveq2 | ⊢ ( 𝐵  =  if ( 𝐵  ∈  ℕ0 ,  𝐵 ,  0 )  →  ( if ( 𝐴  ∈  ℕ0 ,  𝐴 ,  0 )  +  𝐵 )  =  ( if ( 𝐴  ∈  ℕ0 ,  𝐴 ,  0 )  +  if ( 𝐵  ∈  ℕ0 ,  𝐵 ,  0 ) ) ) | 
						
							| 9 | 8 | oveq1d | ⊢ ( 𝐵  =  if ( 𝐵  ∈  ℕ0 ,  𝐵 ,  0 )  →  ( ( if ( 𝐴  ∈  ℕ0 ,  𝐴 ,  0 )  +  𝐵 ) ↑ 2 )  =  ( ( if ( 𝐴  ∈  ℕ0 ,  𝐴 ,  0 )  +  if ( 𝐵  ∈  ℕ0 ,  𝐵 ,  0 ) ) ↑ 2 ) ) | 
						
							| 10 |  | id | ⊢ ( 𝐵  =  if ( 𝐵  ∈  ℕ0 ,  𝐵 ,  0 )  →  𝐵  =  if ( 𝐵  ∈  ℕ0 ,  𝐵 ,  0 ) ) | 
						
							| 11 | 9 10 | oveq12d | ⊢ ( 𝐵  =  if ( 𝐵  ∈  ℕ0 ,  𝐵 ,  0 )  →  ( ( ( if ( 𝐴  ∈  ℕ0 ,  𝐴 ,  0 )  +  𝐵 ) ↑ 2 )  +  𝐵 )  =  ( ( ( if ( 𝐴  ∈  ℕ0 ,  𝐴 ,  0 )  +  if ( 𝐵  ∈  ℕ0 ,  𝐵 ,  0 ) ) ↑ 2 )  +  if ( 𝐵  ∈  ℕ0 ,  𝐵 ,  0 ) ) ) | 
						
							| 12 | 11 | eqeq1d | ⊢ ( 𝐵  =  if ( 𝐵  ∈  ℕ0 ,  𝐵 ,  0 )  →  ( ( ( ( if ( 𝐴  ∈  ℕ0 ,  𝐴 ,  0 )  +  𝐵 ) ↑ 2 )  +  𝐵 )  =  ( ( ( 𝐶  +  𝐷 ) ↑ 2 )  +  𝐷 )  ↔  ( ( ( if ( 𝐴  ∈  ℕ0 ,  𝐴 ,  0 )  +  if ( 𝐵  ∈  ℕ0 ,  𝐵 ,  0 ) ) ↑ 2 )  +  if ( 𝐵  ∈  ℕ0 ,  𝐵 ,  0 ) )  =  ( ( ( 𝐶  +  𝐷 ) ↑ 2 )  +  𝐷 ) ) ) | 
						
							| 13 |  | eqeq1 | ⊢ ( 𝐵  =  if ( 𝐵  ∈  ℕ0 ,  𝐵 ,  0 )  →  ( 𝐵  =  𝐷  ↔  if ( 𝐵  ∈  ℕ0 ,  𝐵 ,  0 )  =  𝐷 ) ) | 
						
							| 14 | 13 | anbi2d | ⊢ ( 𝐵  =  if ( 𝐵  ∈  ℕ0 ,  𝐵 ,  0 )  →  ( ( if ( 𝐴  ∈  ℕ0 ,  𝐴 ,  0 )  =  𝐶  ∧  𝐵  =  𝐷 )  ↔  ( if ( 𝐴  ∈  ℕ0 ,  𝐴 ,  0 )  =  𝐶  ∧  if ( 𝐵  ∈  ℕ0 ,  𝐵 ,  0 )  =  𝐷 ) ) ) | 
						
							| 15 | 12 14 | bibi12d | ⊢ ( 𝐵  =  if ( 𝐵  ∈  ℕ0 ,  𝐵 ,  0 )  →  ( ( ( ( ( if ( 𝐴  ∈  ℕ0 ,  𝐴 ,  0 )  +  𝐵 ) ↑ 2 )  +  𝐵 )  =  ( ( ( 𝐶  +  𝐷 ) ↑ 2 )  +  𝐷 )  ↔  ( if ( 𝐴  ∈  ℕ0 ,  𝐴 ,  0 )  =  𝐶  ∧  𝐵  =  𝐷 ) )  ↔  ( ( ( ( if ( 𝐴  ∈  ℕ0 ,  𝐴 ,  0 )  +  if ( 𝐵  ∈  ℕ0 ,  𝐵 ,  0 ) ) ↑ 2 )  +  if ( 𝐵  ∈  ℕ0 ,  𝐵 ,  0 ) )  =  ( ( ( 𝐶  +  𝐷 ) ↑ 2 )  +  𝐷 )  ↔  ( if ( 𝐴  ∈  ℕ0 ,  𝐴 ,  0 )  =  𝐶  ∧  if ( 𝐵  ∈  ℕ0 ,  𝐵 ,  0 )  =  𝐷 ) ) ) ) | 
						
							| 16 |  | oveq1 | ⊢ ( 𝐶  =  if ( 𝐶  ∈  ℕ0 ,  𝐶 ,  0 )  →  ( 𝐶  +  𝐷 )  =  ( if ( 𝐶  ∈  ℕ0 ,  𝐶 ,  0 )  +  𝐷 ) ) | 
						
							| 17 | 16 | oveq1d | ⊢ ( 𝐶  =  if ( 𝐶  ∈  ℕ0 ,  𝐶 ,  0 )  →  ( ( 𝐶  +  𝐷 ) ↑ 2 )  =  ( ( if ( 𝐶  ∈  ℕ0 ,  𝐶 ,  0 )  +  𝐷 ) ↑ 2 ) ) | 
						
							| 18 | 17 | oveq1d | ⊢ ( 𝐶  =  if ( 𝐶  ∈  ℕ0 ,  𝐶 ,  0 )  →  ( ( ( 𝐶  +  𝐷 ) ↑ 2 )  +  𝐷 )  =  ( ( ( if ( 𝐶  ∈  ℕ0 ,  𝐶 ,  0 )  +  𝐷 ) ↑ 2 )  +  𝐷 ) ) | 
						
							| 19 | 18 | eqeq2d | ⊢ ( 𝐶  =  if ( 𝐶  ∈  ℕ0 ,  𝐶 ,  0 )  →  ( ( ( ( if ( 𝐴  ∈  ℕ0 ,  𝐴 ,  0 )  +  if ( 𝐵  ∈  ℕ0 ,  𝐵 ,  0 ) ) ↑ 2 )  +  if ( 𝐵  ∈  ℕ0 ,  𝐵 ,  0 ) )  =  ( ( ( 𝐶  +  𝐷 ) ↑ 2 )  +  𝐷 )  ↔  ( ( ( if ( 𝐴  ∈  ℕ0 ,  𝐴 ,  0 )  +  if ( 𝐵  ∈  ℕ0 ,  𝐵 ,  0 ) ) ↑ 2 )  +  if ( 𝐵  ∈  ℕ0 ,  𝐵 ,  0 ) )  =  ( ( ( if ( 𝐶  ∈  ℕ0 ,  𝐶 ,  0 )  +  𝐷 ) ↑ 2 )  +  𝐷 ) ) ) | 
						
							| 20 |  | eqeq2 | ⊢ ( 𝐶  =  if ( 𝐶  ∈  ℕ0 ,  𝐶 ,  0 )  →  ( if ( 𝐴  ∈  ℕ0 ,  𝐴 ,  0 )  =  𝐶  ↔  if ( 𝐴  ∈  ℕ0 ,  𝐴 ,  0 )  =  if ( 𝐶  ∈  ℕ0 ,  𝐶 ,  0 ) ) ) | 
						
							| 21 | 20 | anbi1d | ⊢ ( 𝐶  =  if ( 𝐶  ∈  ℕ0 ,  𝐶 ,  0 )  →  ( ( if ( 𝐴  ∈  ℕ0 ,  𝐴 ,  0 )  =  𝐶  ∧  if ( 𝐵  ∈  ℕ0 ,  𝐵 ,  0 )  =  𝐷 )  ↔  ( if ( 𝐴  ∈  ℕ0 ,  𝐴 ,  0 )  =  if ( 𝐶  ∈  ℕ0 ,  𝐶 ,  0 )  ∧  if ( 𝐵  ∈  ℕ0 ,  𝐵 ,  0 )  =  𝐷 ) ) ) | 
						
							| 22 | 19 21 | bibi12d | ⊢ ( 𝐶  =  if ( 𝐶  ∈  ℕ0 ,  𝐶 ,  0 )  →  ( ( ( ( ( if ( 𝐴  ∈  ℕ0 ,  𝐴 ,  0 )  +  if ( 𝐵  ∈  ℕ0 ,  𝐵 ,  0 ) ) ↑ 2 )  +  if ( 𝐵  ∈  ℕ0 ,  𝐵 ,  0 ) )  =  ( ( ( 𝐶  +  𝐷 ) ↑ 2 )  +  𝐷 )  ↔  ( if ( 𝐴  ∈  ℕ0 ,  𝐴 ,  0 )  =  𝐶  ∧  if ( 𝐵  ∈  ℕ0 ,  𝐵 ,  0 )  =  𝐷 ) )  ↔  ( ( ( ( if ( 𝐴  ∈  ℕ0 ,  𝐴 ,  0 )  +  if ( 𝐵  ∈  ℕ0 ,  𝐵 ,  0 ) ) ↑ 2 )  +  if ( 𝐵  ∈  ℕ0 ,  𝐵 ,  0 ) )  =  ( ( ( if ( 𝐶  ∈  ℕ0 ,  𝐶 ,  0 )  +  𝐷 ) ↑ 2 )  +  𝐷 )  ↔  ( if ( 𝐴  ∈  ℕ0 ,  𝐴 ,  0 )  =  if ( 𝐶  ∈  ℕ0 ,  𝐶 ,  0 )  ∧  if ( 𝐵  ∈  ℕ0 ,  𝐵 ,  0 )  =  𝐷 ) ) ) ) | 
						
							| 23 |  | oveq2 | ⊢ ( 𝐷  =  if ( 𝐷  ∈  ℕ0 ,  𝐷 ,  0 )  →  ( if ( 𝐶  ∈  ℕ0 ,  𝐶 ,  0 )  +  𝐷 )  =  ( if ( 𝐶  ∈  ℕ0 ,  𝐶 ,  0 )  +  if ( 𝐷  ∈  ℕ0 ,  𝐷 ,  0 ) ) ) | 
						
							| 24 | 23 | oveq1d | ⊢ ( 𝐷  =  if ( 𝐷  ∈  ℕ0 ,  𝐷 ,  0 )  →  ( ( if ( 𝐶  ∈  ℕ0 ,  𝐶 ,  0 )  +  𝐷 ) ↑ 2 )  =  ( ( if ( 𝐶  ∈  ℕ0 ,  𝐶 ,  0 )  +  if ( 𝐷  ∈  ℕ0 ,  𝐷 ,  0 ) ) ↑ 2 ) ) | 
						
							| 25 |  | id | ⊢ ( 𝐷  =  if ( 𝐷  ∈  ℕ0 ,  𝐷 ,  0 )  →  𝐷  =  if ( 𝐷  ∈  ℕ0 ,  𝐷 ,  0 ) ) | 
						
							| 26 | 24 25 | oveq12d | ⊢ ( 𝐷  =  if ( 𝐷  ∈  ℕ0 ,  𝐷 ,  0 )  →  ( ( ( if ( 𝐶  ∈  ℕ0 ,  𝐶 ,  0 )  +  𝐷 ) ↑ 2 )  +  𝐷 )  =  ( ( ( if ( 𝐶  ∈  ℕ0 ,  𝐶 ,  0 )  +  if ( 𝐷  ∈  ℕ0 ,  𝐷 ,  0 ) ) ↑ 2 )  +  if ( 𝐷  ∈  ℕ0 ,  𝐷 ,  0 ) ) ) | 
						
							| 27 | 26 | eqeq2d | ⊢ ( 𝐷  =  if ( 𝐷  ∈  ℕ0 ,  𝐷 ,  0 )  →  ( ( ( ( if ( 𝐴  ∈  ℕ0 ,  𝐴 ,  0 )  +  if ( 𝐵  ∈  ℕ0 ,  𝐵 ,  0 ) ) ↑ 2 )  +  if ( 𝐵  ∈  ℕ0 ,  𝐵 ,  0 ) )  =  ( ( ( if ( 𝐶  ∈  ℕ0 ,  𝐶 ,  0 )  +  𝐷 ) ↑ 2 )  +  𝐷 )  ↔  ( ( ( if ( 𝐴  ∈  ℕ0 ,  𝐴 ,  0 )  +  if ( 𝐵  ∈  ℕ0 ,  𝐵 ,  0 ) ) ↑ 2 )  +  if ( 𝐵  ∈  ℕ0 ,  𝐵 ,  0 ) )  =  ( ( ( if ( 𝐶  ∈  ℕ0 ,  𝐶 ,  0 )  +  if ( 𝐷  ∈  ℕ0 ,  𝐷 ,  0 ) ) ↑ 2 )  +  if ( 𝐷  ∈  ℕ0 ,  𝐷 ,  0 ) ) ) ) | 
						
							| 28 |  | eqeq2 | ⊢ ( 𝐷  =  if ( 𝐷  ∈  ℕ0 ,  𝐷 ,  0 )  →  ( if ( 𝐵  ∈  ℕ0 ,  𝐵 ,  0 )  =  𝐷  ↔  if ( 𝐵  ∈  ℕ0 ,  𝐵 ,  0 )  =  if ( 𝐷  ∈  ℕ0 ,  𝐷 ,  0 ) ) ) | 
						
							| 29 | 28 | anbi2d | ⊢ ( 𝐷  =  if ( 𝐷  ∈  ℕ0 ,  𝐷 ,  0 )  →  ( ( if ( 𝐴  ∈  ℕ0 ,  𝐴 ,  0 )  =  if ( 𝐶  ∈  ℕ0 ,  𝐶 ,  0 )  ∧  if ( 𝐵  ∈  ℕ0 ,  𝐵 ,  0 )  =  𝐷 )  ↔  ( if ( 𝐴  ∈  ℕ0 ,  𝐴 ,  0 )  =  if ( 𝐶  ∈  ℕ0 ,  𝐶 ,  0 )  ∧  if ( 𝐵  ∈  ℕ0 ,  𝐵 ,  0 )  =  if ( 𝐷  ∈  ℕ0 ,  𝐷 ,  0 ) ) ) ) | 
						
							| 30 | 27 29 | bibi12d | ⊢ ( 𝐷  =  if ( 𝐷  ∈  ℕ0 ,  𝐷 ,  0 )  →  ( ( ( ( ( if ( 𝐴  ∈  ℕ0 ,  𝐴 ,  0 )  +  if ( 𝐵  ∈  ℕ0 ,  𝐵 ,  0 ) ) ↑ 2 )  +  if ( 𝐵  ∈  ℕ0 ,  𝐵 ,  0 ) )  =  ( ( ( if ( 𝐶  ∈  ℕ0 ,  𝐶 ,  0 )  +  𝐷 ) ↑ 2 )  +  𝐷 )  ↔  ( if ( 𝐴  ∈  ℕ0 ,  𝐴 ,  0 )  =  if ( 𝐶  ∈  ℕ0 ,  𝐶 ,  0 )  ∧  if ( 𝐵  ∈  ℕ0 ,  𝐵 ,  0 )  =  𝐷 ) )  ↔  ( ( ( ( if ( 𝐴  ∈  ℕ0 ,  𝐴 ,  0 )  +  if ( 𝐵  ∈  ℕ0 ,  𝐵 ,  0 ) ) ↑ 2 )  +  if ( 𝐵  ∈  ℕ0 ,  𝐵 ,  0 ) )  =  ( ( ( if ( 𝐶  ∈  ℕ0 ,  𝐶 ,  0 )  +  if ( 𝐷  ∈  ℕ0 ,  𝐷 ,  0 ) ) ↑ 2 )  +  if ( 𝐷  ∈  ℕ0 ,  𝐷 ,  0 ) )  ↔  ( if ( 𝐴  ∈  ℕ0 ,  𝐴 ,  0 )  =  if ( 𝐶  ∈  ℕ0 ,  𝐶 ,  0 )  ∧  if ( 𝐵  ∈  ℕ0 ,  𝐵 ,  0 )  =  if ( 𝐷  ∈  ℕ0 ,  𝐷 ,  0 ) ) ) ) ) | 
						
							| 31 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 32 | 31 | elimel | ⊢ if ( 𝐴  ∈  ℕ0 ,  𝐴 ,  0 )  ∈  ℕ0 | 
						
							| 33 | 31 | elimel | ⊢ if ( 𝐵  ∈  ℕ0 ,  𝐵 ,  0 )  ∈  ℕ0 | 
						
							| 34 | 31 | elimel | ⊢ if ( 𝐶  ∈  ℕ0 ,  𝐶 ,  0 )  ∈  ℕ0 | 
						
							| 35 | 31 | elimel | ⊢ if ( 𝐷  ∈  ℕ0 ,  𝐷 ,  0 )  ∈  ℕ0 | 
						
							| 36 | 32 33 34 35 | nn0opth2i | ⊢ ( ( ( ( if ( 𝐴  ∈  ℕ0 ,  𝐴 ,  0 )  +  if ( 𝐵  ∈  ℕ0 ,  𝐵 ,  0 ) ) ↑ 2 )  +  if ( 𝐵  ∈  ℕ0 ,  𝐵 ,  0 ) )  =  ( ( ( if ( 𝐶  ∈  ℕ0 ,  𝐶 ,  0 )  +  if ( 𝐷  ∈  ℕ0 ,  𝐷 ,  0 ) ) ↑ 2 )  +  if ( 𝐷  ∈  ℕ0 ,  𝐷 ,  0 ) )  ↔  ( if ( 𝐴  ∈  ℕ0 ,  𝐴 ,  0 )  =  if ( 𝐶  ∈  ℕ0 ,  𝐶 ,  0 )  ∧  if ( 𝐵  ∈  ℕ0 ,  𝐵 ,  0 )  =  if ( 𝐷  ∈  ℕ0 ,  𝐷 ,  0 ) ) ) | 
						
							| 37 | 7 15 22 30 36 | dedth4h | ⊢ ( ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  ∧  ( 𝐶  ∈  ℕ0  ∧  𝐷  ∈  ℕ0 ) )  →  ( ( ( ( 𝐴  +  𝐵 ) ↑ 2 )  +  𝐵 )  =  ( ( ( 𝐶  +  𝐷 ) ↑ 2 )  +  𝐷 )  ↔  ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 ) ) ) |