| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							nn0opth.1 | 
							⊢ 𝐴  ∈  ℕ0  | 
						
						
							| 2 | 
							
								
							 | 
							nn0opth.2 | 
							⊢ 𝐵  ∈  ℕ0  | 
						
						
							| 3 | 
							
								
							 | 
							nn0opth.3 | 
							⊢ 𝐶  ∈  ℕ0  | 
						
						
							| 4 | 
							
								
							 | 
							nn0opth.4 | 
							⊢ 𝐷  ∈  ℕ0  | 
						
						
							| 5 | 
							
								1
							 | 
							nn0cni | 
							⊢ 𝐴  ∈  ℂ  | 
						
						
							| 6 | 
							
								2
							 | 
							nn0cni | 
							⊢ 𝐵  ∈  ℂ  | 
						
						
							| 7 | 
							
								5 6
							 | 
							addcli | 
							⊢ ( 𝐴  +  𝐵 )  ∈  ℂ  | 
						
						
							| 8 | 
							
								7
							 | 
							sqvali | 
							⊢ ( ( 𝐴  +  𝐵 ) ↑ 2 )  =  ( ( 𝐴  +  𝐵 )  ·  ( 𝐴  +  𝐵 ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							oveq1i | 
							⊢ ( ( ( 𝐴  +  𝐵 ) ↑ 2 )  +  𝐵 )  =  ( ( ( 𝐴  +  𝐵 )  ·  ( 𝐴  +  𝐵 ) )  +  𝐵 )  | 
						
						
							| 10 | 
							
								3
							 | 
							nn0cni | 
							⊢ 𝐶  ∈  ℂ  | 
						
						
							| 11 | 
							
								4
							 | 
							nn0cni | 
							⊢ 𝐷  ∈  ℂ  | 
						
						
							| 12 | 
							
								10 11
							 | 
							addcli | 
							⊢ ( 𝐶  +  𝐷 )  ∈  ℂ  | 
						
						
							| 13 | 
							
								12
							 | 
							sqvali | 
							⊢ ( ( 𝐶  +  𝐷 ) ↑ 2 )  =  ( ( 𝐶  +  𝐷 )  ·  ( 𝐶  +  𝐷 ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							oveq1i | 
							⊢ ( ( ( 𝐶  +  𝐷 ) ↑ 2 )  +  𝐷 )  =  ( ( ( 𝐶  +  𝐷 )  ·  ( 𝐶  +  𝐷 ) )  +  𝐷 )  | 
						
						
							| 15 | 
							
								9 14
							 | 
							eqeq12i | 
							⊢ ( ( ( ( 𝐴  +  𝐵 ) ↑ 2 )  +  𝐵 )  =  ( ( ( 𝐶  +  𝐷 ) ↑ 2 )  +  𝐷 )  ↔  ( ( ( 𝐴  +  𝐵 )  ·  ( 𝐴  +  𝐵 ) )  +  𝐵 )  =  ( ( ( 𝐶  +  𝐷 )  ·  ( 𝐶  +  𝐷 ) )  +  𝐷 ) )  | 
						
						
							| 16 | 
							
								1 2 3 4
							 | 
							nn0opthi | 
							⊢ ( ( ( ( 𝐴  +  𝐵 )  ·  ( 𝐴  +  𝐵 ) )  +  𝐵 )  =  ( ( ( 𝐶  +  𝐷 )  ·  ( 𝐶  +  𝐷 ) )  +  𝐷 )  ↔  ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 ) )  | 
						
						
							| 17 | 
							
								15 16
							 | 
							bitri | 
							⊢ ( ( ( ( 𝐴  +  𝐵 ) ↑ 2 )  +  𝐵 )  =  ( ( ( 𝐶  +  𝐷 ) ↑ 2 )  +  𝐷 )  ↔  ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 ) )  |