| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnz |
|- ( N e. NN -> N e. ZZ ) |
| 2 |
|
zesq |
|- ( N e. ZZ -> ( ( N / 2 ) e. ZZ <-> ( ( N ^ 2 ) / 2 ) e. ZZ ) ) |
| 3 |
1 2
|
syl |
|- ( N e. NN -> ( ( N / 2 ) e. ZZ <-> ( ( N ^ 2 ) / 2 ) e. ZZ ) ) |
| 4 |
|
nnrp |
|- ( N e. NN -> N e. RR+ ) |
| 5 |
4
|
rphalfcld |
|- ( N e. NN -> ( N / 2 ) e. RR+ ) |
| 6 |
5
|
rpgt0d |
|- ( N e. NN -> 0 < ( N / 2 ) ) |
| 7 |
|
nnsqcl |
|- ( N e. NN -> ( N ^ 2 ) e. NN ) |
| 8 |
7
|
nnrpd |
|- ( N e. NN -> ( N ^ 2 ) e. RR+ ) |
| 9 |
8
|
rphalfcld |
|- ( N e. NN -> ( ( N ^ 2 ) / 2 ) e. RR+ ) |
| 10 |
9
|
rpgt0d |
|- ( N e. NN -> 0 < ( ( N ^ 2 ) / 2 ) ) |
| 11 |
6 10
|
2thd |
|- ( N e. NN -> ( 0 < ( N / 2 ) <-> 0 < ( ( N ^ 2 ) / 2 ) ) ) |
| 12 |
3 11
|
anbi12d |
|- ( N e. NN -> ( ( ( N / 2 ) e. ZZ /\ 0 < ( N / 2 ) ) <-> ( ( ( N ^ 2 ) / 2 ) e. ZZ /\ 0 < ( ( N ^ 2 ) / 2 ) ) ) ) |
| 13 |
|
elnnz |
|- ( ( N / 2 ) e. NN <-> ( ( N / 2 ) e. ZZ /\ 0 < ( N / 2 ) ) ) |
| 14 |
|
elnnz |
|- ( ( ( N ^ 2 ) / 2 ) e. NN <-> ( ( ( N ^ 2 ) / 2 ) e. ZZ /\ 0 < ( ( N ^ 2 ) / 2 ) ) ) |
| 15 |
12 13 14
|
3bitr4g |
|- ( N e. NN -> ( ( N / 2 ) e. NN <-> ( ( N ^ 2 ) / 2 ) e. NN ) ) |