| Step |
Hyp |
Ref |
Expression |
| 1 |
|
crrecz.1 |
|- A e. RR |
| 2 |
|
crrecz.2 |
|- B e. RR |
| 3 |
1
|
recni |
|- A e. CC |
| 4 |
3
|
sqcli |
|- ( A ^ 2 ) e. CC |
| 5 |
|
ax-icn |
|- _i e. CC |
| 6 |
2
|
recni |
|- B e. CC |
| 7 |
5 6
|
mulcli |
|- ( _i x. B ) e. CC |
| 8 |
7
|
sqcli |
|- ( ( _i x. B ) ^ 2 ) e. CC |
| 9 |
4 8
|
negsubi |
|- ( ( A ^ 2 ) + -u ( ( _i x. B ) ^ 2 ) ) = ( ( A ^ 2 ) - ( ( _i x. B ) ^ 2 ) ) |
| 10 |
5 6
|
sqmuli |
|- ( ( _i x. B ) ^ 2 ) = ( ( _i ^ 2 ) x. ( B ^ 2 ) ) |
| 11 |
|
i2 |
|- ( _i ^ 2 ) = -u 1 |
| 12 |
11
|
oveq1i |
|- ( ( _i ^ 2 ) x. ( B ^ 2 ) ) = ( -u 1 x. ( B ^ 2 ) ) |
| 13 |
|
ax-1cn |
|- 1 e. CC |
| 14 |
6
|
sqcli |
|- ( B ^ 2 ) e. CC |
| 15 |
13 14
|
mulneg1i |
|- ( -u 1 x. ( B ^ 2 ) ) = -u ( 1 x. ( B ^ 2 ) ) |
| 16 |
10 12 15
|
3eqtri |
|- ( ( _i x. B ) ^ 2 ) = -u ( 1 x. ( B ^ 2 ) ) |
| 17 |
16
|
negeqi |
|- -u ( ( _i x. B ) ^ 2 ) = -u -u ( 1 x. ( B ^ 2 ) ) |
| 18 |
13 14
|
mulcli |
|- ( 1 x. ( B ^ 2 ) ) e. CC |
| 19 |
18
|
negnegi |
|- -u -u ( 1 x. ( B ^ 2 ) ) = ( 1 x. ( B ^ 2 ) ) |
| 20 |
14
|
mullidi |
|- ( 1 x. ( B ^ 2 ) ) = ( B ^ 2 ) |
| 21 |
17 19 20
|
3eqtri |
|- -u ( ( _i x. B ) ^ 2 ) = ( B ^ 2 ) |
| 22 |
21
|
oveq2i |
|- ( ( A ^ 2 ) + -u ( ( _i x. B ) ^ 2 ) ) = ( ( A ^ 2 ) + ( B ^ 2 ) ) |
| 23 |
3 7
|
subsqi |
|- ( ( A ^ 2 ) - ( ( _i x. B ) ^ 2 ) ) = ( ( A + ( _i x. B ) ) x. ( A - ( _i x. B ) ) ) |
| 24 |
9 22 23
|
3eqtr3ri |
|- ( ( A + ( _i x. B ) ) x. ( A - ( _i x. B ) ) ) = ( ( A ^ 2 ) + ( B ^ 2 ) ) |
| 25 |
24
|
oveq1i |
|- ( ( ( A + ( _i x. B ) ) x. ( A - ( _i x. B ) ) ) / ( ( A ^ 2 ) + ( B ^ 2 ) ) ) = ( ( ( A ^ 2 ) + ( B ^ 2 ) ) / ( ( A ^ 2 ) + ( B ^ 2 ) ) ) |
| 26 |
|
neorian |
|- ( ( A =/= 0 \/ B =/= 0 ) <-> -. ( A = 0 /\ B = 0 ) ) |
| 27 |
|
sumsqeq0 |
|- ( ( A e. RR /\ B e. RR ) -> ( ( A = 0 /\ B = 0 ) <-> ( ( A ^ 2 ) + ( B ^ 2 ) ) = 0 ) ) |
| 28 |
1 2 27
|
mp2an |
|- ( ( A = 0 /\ B = 0 ) <-> ( ( A ^ 2 ) + ( B ^ 2 ) ) = 0 ) |
| 29 |
28
|
necon3bbii |
|- ( -. ( A = 0 /\ B = 0 ) <-> ( ( A ^ 2 ) + ( B ^ 2 ) ) =/= 0 ) |
| 30 |
26 29
|
bitri |
|- ( ( A =/= 0 \/ B =/= 0 ) <-> ( ( A ^ 2 ) + ( B ^ 2 ) ) =/= 0 ) |
| 31 |
3 7
|
addcli |
|- ( A + ( _i x. B ) ) e. CC |
| 32 |
3 7
|
subcli |
|- ( A - ( _i x. B ) ) e. CC |
| 33 |
4 14
|
addcli |
|- ( ( A ^ 2 ) + ( B ^ 2 ) ) e. CC |
| 34 |
31 32 33
|
divasszi |
|- ( ( ( A ^ 2 ) + ( B ^ 2 ) ) =/= 0 -> ( ( ( A + ( _i x. B ) ) x. ( A - ( _i x. B ) ) ) / ( ( A ^ 2 ) + ( B ^ 2 ) ) ) = ( ( A + ( _i x. B ) ) x. ( ( A - ( _i x. B ) ) / ( ( A ^ 2 ) + ( B ^ 2 ) ) ) ) ) |
| 35 |
30 34
|
sylbi |
|- ( ( A =/= 0 \/ B =/= 0 ) -> ( ( ( A + ( _i x. B ) ) x. ( A - ( _i x. B ) ) ) / ( ( A ^ 2 ) + ( B ^ 2 ) ) ) = ( ( A + ( _i x. B ) ) x. ( ( A - ( _i x. B ) ) / ( ( A ^ 2 ) + ( B ^ 2 ) ) ) ) ) |
| 36 |
|
divid |
|- ( ( ( ( A ^ 2 ) + ( B ^ 2 ) ) e. CC /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) =/= 0 ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) / ( ( A ^ 2 ) + ( B ^ 2 ) ) ) = 1 ) |
| 37 |
33 36
|
mpan |
|- ( ( ( A ^ 2 ) + ( B ^ 2 ) ) =/= 0 -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) / ( ( A ^ 2 ) + ( B ^ 2 ) ) ) = 1 ) |
| 38 |
30 37
|
sylbi |
|- ( ( A =/= 0 \/ B =/= 0 ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) / ( ( A ^ 2 ) + ( B ^ 2 ) ) ) = 1 ) |
| 39 |
25 35 38
|
3eqtr3a |
|- ( ( A =/= 0 \/ B =/= 0 ) -> ( ( A + ( _i x. B ) ) x. ( ( A - ( _i x. B ) ) / ( ( A ^ 2 ) + ( B ^ 2 ) ) ) ) = 1 ) |
| 40 |
32 33
|
divclzi |
|- ( ( ( A ^ 2 ) + ( B ^ 2 ) ) =/= 0 -> ( ( A - ( _i x. B ) ) / ( ( A ^ 2 ) + ( B ^ 2 ) ) ) e. CC ) |
| 41 |
30 40
|
sylbi |
|- ( ( A =/= 0 \/ B =/= 0 ) -> ( ( A - ( _i x. B ) ) / ( ( A ^ 2 ) + ( B ^ 2 ) ) ) e. CC ) |
| 42 |
31
|
a1i |
|- ( ( A =/= 0 \/ B =/= 0 ) -> ( A + ( _i x. B ) ) e. CC ) |
| 43 |
|
crne0 |
|- ( ( A e. RR /\ B e. RR ) -> ( ( A =/= 0 \/ B =/= 0 ) <-> ( A + ( _i x. B ) ) =/= 0 ) ) |
| 44 |
1 2 43
|
mp2an |
|- ( ( A =/= 0 \/ B =/= 0 ) <-> ( A + ( _i x. B ) ) =/= 0 ) |
| 45 |
44
|
biimpi |
|- ( ( A =/= 0 \/ B =/= 0 ) -> ( A + ( _i x. B ) ) =/= 0 ) |
| 46 |
|
divmul |
|- ( ( 1 e. CC /\ ( ( A - ( _i x. B ) ) / ( ( A ^ 2 ) + ( B ^ 2 ) ) ) e. CC /\ ( ( A + ( _i x. B ) ) e. CC /\ ( A + ( _i x. B ) ) =/= 0 ) ) -> ( ( 1 / ( A + ( _i x. B ) ) ) = ( ( A - ( _i x. B ) ) / ( ( A ^ 2 ) + ( B ^ 2 ) ) ) <-> ( ( A + ( _i x. B ) ) x. ( ( A - ( _i x. B ) ) / ( ( A ^ 2 ) + ( B ^ 2 ) ) ) ) = 1 ) ) |
| 47 |
13 46
|
mp3an1 |
|- ( ( ( ( A - ( _i x. B ) ) / ( ( A ^ 2 ) + ( B ^ 2 ) ) ) e. CC /\ ( ( A + ( _i x. B ) ) e. CC /\ ( A + ( _i x. B ) ) =/= 0 ) ) -> ( ( 1 / ( A + ( _i x. B ) ) ) = ( ( A - ( _i x. B ) ) / ( ( A ^ 2 ) + ( B ^ 2 ) ) ) <-> ( ( A + ( _i x. B ) ) x. ( ( A - ( _i x. B ) ) / ( ( A ^ 2 ) + ( B ^ 2 ) ) ) ) = 1 ) ) |
| 48 |
41 42 45 47
|
syl12anc |
|- ( ( A =/= 0 \/ B =/= 0 ) -> ( ( 1 / ( A + ( _i x. B ) ) ) = ( ( A - ( _i x. B ) ) / ( ( A ^ 2 ) + ( B ^ 2 ) ) ) <-> ( ( A + ( _i x. B ) ) x. ( ( A - ( _i x. B ) ) / ( ( A ^ 2 ) + ( B ^ 2 ) ) ) ) = 1 ) ) |
| 49 |
39 48
|
mpbird |
|- ( ( A =/= 0 \/ B =/= 0 ) -> ( 1 / ( A + ( _i x. B ) ) ) = ( ( A - ( _i x. B ) ) / ( ( A ^ 2 ) + ( B ^ 2 ) ) ) ) |