Step |
Hyp |
Ref |
Expression |
1 |
|
nndomo |
|- ( ( A e. _om /\ B e. _om ) -> ( A ~<_ B <-> A C_ B ) ) |
2 |
|
nneneq |
|- ( ( A e. _om /\ B e. _om ) -> ( A ~~ B <-> A = B ) ) |
3 |
2
|
notbid |
|- ( ( A e. _om /\ B e. _om ) -> ( -. A ~~ B <-> -. A = B ) ) |
4 |
1 3
|
anbi12d |
|- ( ( A e. _om /\ B e. _om ) -> ( ( A ~<_ B /\ -. A ~~ B ) <-> ( A C_ B /\ -. A = B ) ) ) |
5 |
|
brsdom |
|- ( A ~< B <-> ( A ~<_ B /\ -. A ~~ B ) ) |
6 |
|
dfpss2 |
|- ( A C. B <-> ( A C_ B /\ -. A = B ) ) |
7 |
4 5 6
|
3bitr4g |
|- ( ( A e. _om /\ B e. _om ) -> ( A ~< B <-> A C. B ) ) |