Description: Strict dominance of a set over a natural number is the same as dominance over its successor. (Contributed by Mario Carneiro, 12-Jan-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | sucdom | |- ( A e. _om -> ( A ~< B <-> suc A ~<_ B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sucdom2 | |- ( A ~< B -> suc A ~<_ B ) |
|
2 | php4 | |- ( A e. _om -> A ~< suc A ) |
|
3 | sdomdomtr | |- ( ( A ~< suc A /\ suc A ~<_ B ) -> A ~< B ) |
|
4 | 3 | ex | |- ( A ~< suc A -> ( suc A ~<_ B -> A ~< B ) ) |
5 | 2 4 | syl | |- ( A e. _om -> ( suc A ~<_ B -> A ~< B ) ) |
6 | 1 5 | impbid2 | |- ( A e. _om -> ( A ~< B <-> suc A ~<_ B ) ) |