Step |
Hyp |
Ref |
Expression |
1 |
|
n0 |
|- ( A =/= (/) <-> E. y y e. A ) |
2 |
|
vex |
|- y e. _V |
3 |
2
|
snss |
|- ( y e. A <-> { y } C_ A ) |
4 |
2
|
snnz |
|- { y } =/= (/) |
5 |
|
snex |
|- { y } e. _V |
6 |
|
sseq1 |
|- ( x = { y } -> ( x C_ A <-> { y } C_ A ) ) |
7 |
|
neeq1 |
|- ( x = { y } -> ( x =/= (/) <-> { y } =/= (/) ) ) |
8 |
6 7
|
anbi12d |
|- ( x = { y } -> ( ( x C_ A /\ x =/= (/) ) <-> ( { y } C_ A /\ { y } =/= (/) ) ) ) |
9 |
5 8
|
spcev |
|- ( ( { y } C_ A /\ { y } =/= (/) ) -> E. x ( x C_ A /\ x =/= (/) ) ) |
10 |
4 9
|
mpan2 |
|- ( { y } C_ A -> E. x ( x C_ A /\ x =/= (/) ) ) |
11 |
3 10
|
sylbi |
|- ( y e. A -> E. x ( x C_ A /\ x =/= (/) ) ) |
12 |
11
|
exlimiv |
|- ( E. y y e. A -> E. x ( x C_ A /\ x =/= (/) ) ) |
13 |
1 12
|
sylbi |
|- ( A =/= (/) -> E. x ( x C_ A /\ x =/= (/) ) ) |