Description: Next we establish the set-like nature of the relationship. (Contributed by Scott Fenton, 19-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | noxpord.1 | |- R = { <. a , b >. | a e. ( ( _Left ` b ) u. ( _Right ` b ) ) } | |
| noxpord.2 | |- S = { <. x , y >. | ( x e. ( No X. No ) /\ y e. ( No X. No ) /\ ( ( ( 1st ` x ) R ( 1st ` y ) \/ ( 1st ` x ) = ( 1st ` y ) ) /\ ( ( 2nd ` x ) R ( 2nd ` y ) \/ ( 2nd ` x ) = ( 2nd ` y ) ) /\ x =/= y ) ) } | ||
| Assertion | noxpordse | |- S Se ( No X. No ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | noxpord.1 |  |-  R = { <. a , b >. | a e. ( ( _Left ` b ) u. ( _Right ` b ) ) } | |
| 2 | noxpord.2 |  |-  S = { <. x , y >. | ( x e. ( No X. No ) /\ y e. ( No X. No ) /\ ( ( ( 1st ` x ) R ( 1st ` y ) \/ ( 1st ` x ) = ( 1st ` y ) ) /\ ( ( 2nd ` x ) R ( 2nd ` y ) \/ ( 2nd ` x ) = ( 2nd ` y ) ) /\ x =/= y ) ) } | |
| 3 | 1 | lrrecse | |- R Se No | 
| 4 | 3 | a1i | |- ( T. -> R Se No ) | 
| 5 | 2 4 4 | sexp2 | |- ( T. -> S Se ( No X. No ) ) | 
| 6 | 5 | mptru | |- S Se ( No X. No ) |