Description: Next we establish the set-like nature of the relationship. (Contributed by Scott Fenton, 19-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | noxpord.1 | |- R = { <. a , b >. | a e. ( ( _L ` b ) u. ( _R ` b ) ) } |
|
noxpord.2 | |- S = { <. x , y >. | ( x e. ( No X. No ) /\ y e. ( No X. No ) /\ ( ( ( 1st ` x ) R ( 1st ` y ) \/ ( 1st ` x ) = ( 1st ` y ) ) /\ ( ( 2nd ` x ) R ( 2nd ` y ) \/ ( 2nd ` x ) = ( 2nd ` y ) ) /\ x =/= y ) ) } |
||
Assertion | noxpordse | |- S Se ( No X. No ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noxpord.1 | |- R = { <. a , b >. | a e. ( ( _L ` b ) u. ( _R ` b ) ) } |
|
2 | noxpord.2 | |- S = { <. x , y >. | ( x e. ( No X. No ) /\ y e. ( No X. No ) /\ ( ( ( 1st ` x ) R ( 1st ` y ) \/ ( 1st ` x ) = ( 1st ` y ) ) /\ ( ( 2nd ` x ) R ( 2nd ` y ) \/ ( 2nd ` x ) = ( 2nd ` y ) ) /\ x =/= y ) ) } |
|
3 | 1 | lrrecse | |- R Se No |
4 | 3 | a1i | |- ( T. -> R Se No ) |
5 | 2 4 4 | sexp2 | |- ( T. -> S Se ( No X. No ) ) |
6 | 5 | mptru | |- S Se ( No X. No ) |